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The commercial use of any information contained in this document may require a license from the proprietor 
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Neither the ForgetIT consortium as a whole, nor individual parties of the ForgetIT consortium warrant that 

the information contained in this document is suitable for use, nor that the use of the information is free from 

risk, and accepts no liability for loss or damage suffered by any person using this information. 

This document reflects only the author's view. The European Community is not liable for any use that may 

be made of the information contained herein. 
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Executive summary  

Today's cloud storage systems are designed for general use and not particularly for long term digital 

preservation. To maintain understanding of the content of the data over time automatic (and periodic) 

processes need to be applied, preferably at the storage level (storlets). The objectives of work package 7 are 

to analyze how storage level processing can be defined and executed within cloud object storage for 

preservation systems, and to extend current cloud technology to support computational storage. 

 

This deliverable (D7.1) presents a brief description of the foundations of computational storage services, in 

the context of the ForgetIT goals. It includes a survey on the state of the art in relevant fields, gap analysis 

and initial architecture and directions for the storlet-enabled preservation store. This document serves as the 

starting point for defining the architecture, extensions and interface for ForgetIT computational storage 

services implementation, to be provided later in deliverables D7.2, D7.3, D7.4). 

 

We begin with a summary of the ForgetIT project goals and the specific goals addressed by Work Package 7 

"Computational Storage Services". It aims to provide computations in the storage (storlets) to support 

Preservation Aware Storage and the goal of maintaining data readable and useful over long periods of time. 

The general approach taken in Work Package 7 is to leverage previous work (Preservation DataStores – 

abbreviated PDS - and Preservation DataStores in the Cloud) and extend/adapt these technologies for the 

needs of the ForgetIT project via building a computational storage mechanism termed "Storlet Engine". The 

Storlet Engine will allow performing ForgetIT relevant data intensive operations near the data, at the storage 

server itself. This enables offloading preservation functionality to the storage and supports automation of 

archiving processes. It decreases the probability of data loss, simplifies the applications, and provides 

improved performance and robustness. The functions of the planned preservation-aware storage will be 

demonstrated with ForgetIT use cases. The planned mechanism is based on commercial cloud storage 

(OpenStack Swift), enhanced with special dedicated data model and interfaces for storlets definition, 

deployment and execution. 

 

In order to provide the background to our approach and the required extensions, we provide below a brief 

review of existing relevant technologies, and the ForgetIT preservation storage system solution approach. 

We start by describing the basics of Long Term Digital Preservation (LTDP), followed by relevant storage 

cloud technologies and gap analysis between existing and desired functions. We provide a more detailed 

description of PDS, PDS Cloud and the existing Storlet Engine, since we plan to use these as our technology 

starting point. Next, and as the next logical step, we point to initial design directions for the ForgetIT 

Workpackage 7, addressing the stated Work Package goals. 

 

We provide details on the planned Storlet Engine extensions for ForgetIT, and list examples of potential 

storlets that are expected to support the ForgetIT goals. We outline the planned integration of our technology 

and mechanism with ForgetIT modules of other Work Packages. 

 

Finally, we mention additional possible directions that we may pursue in addition to the main goals 

described. 
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1 Introduction 

1.1 ForgetIT Goals 

Due to the increase in digital content creation on one hand, and the lack of systematic preservation 

mechanisms on the other, a significant danger is introduced for losing data in the long run. While Long Term 

Digital Preservation (LTDP) of digital content is already well established in institutions such as national 

libraries and archives, it is yet to be adopted by other organizations, and even more so for personal content. 

 

The goal of the ForgetIT project is to ease the adoption of preservation in the personal and organizational 

context by building a data preservation system that includes a managed forgetting mechanism. Since 

forgetting plays a crucial role for humans, it is argued that managed forgetting of saved digital data is a 

viable alternative to keeping an ever growing amount of data indefinitely. Targeting personal and 

organizational use cases, the approach used is to apply contextualized remembering, synergetic preservation 

and managed forgetting. The planned methodology will combine LTDP, information management, 

multimedia analysis, personal information management, storage computing, cloud computing, cognitive 

psychology, law, and economics. The selected ForgetIT means to achieve these goals combine three new 

concepts: 1) Resource selection via managed forgetting modeling, 2) Synergetic Preservation as an integral 

part of the information content lifecycle management and 3) Contextualized Remembering that is evolution-

aware. 

 

An important layer in the ForgetIT architecture is a preservation aware storage with a Storlet Engine for 

processing automatic computations close to the data. 

 

1.2 ForgetIT Preservation Aware Computational Storage Goals 

While preserving organizational, public and personal assets for a long term involves various technologies, 

storage has a key role since it stores the data for most of its lifecycle. Despite the increase in the ability to 

store digital data, the ability to maintain these data readable and useful over time decreases (for example, due 

to frequent changes in rendering technologies). Consequently, the goals of work package 7 aimed to support 

the ForgetIT general goals by building a preservation aware computational storage system for the ForgetIT 

framework (see red circle in ForgetIT framework figure below). The approach is to study, analyze and 

implement a computational storage mechanism (Storlet Engine, see more details below) for an LTDP storage 

system. This enables offloading preservation functionality to the storage and supports automation of 

archiving processes.  

 

 

Figure 1: Preservation aware computational storage in ForgetIT framework 
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The functions of the planned preservation-aware computational storage will be demonstrated with ForgetIT 

use cases (relevant data and computations). Hence, we plan to build a consolidated platform for storage 

objects and computational processes (storlets) that may be defined, triggered and executed close to the data. 

This will add flexibility to the storage service and allow extending its capabilities over time. 

 

In the framework of work package 7, we plan to design a consolidated object and compute architecture that 

is based on commercial cloud storage, and enhance it with a dedicated data model and interfaces for storlets. 

These will be focused on storlets that are relevant to the ForgetIT use cases (e.g., in cases which are data 

intensive or highly secure). We wish to leverage the outcomes of previous FP7 ENSURE and VISION Cloud 

projects to support the ForgetIT use cases. We also wish to extend the object interface to enable dynamically 

adding and removing storlets. 

 

Since the storlets execution environment has diverse requirements (especially when used over time in 

various preservation environments), we also wish to investigate advanced challenges including the 

limitations of the storlet sandbox and their enforcement, the appropriate security model, handling of 

streaming data cases, storlet placement optimization and parallel and distributed execution. 

 

1.3 Summary of existing relevant technologies 

For completeness, a brief summary of relevant technologies is presented here, more details on Preservation 

DataStores (PDS) and storage clouds are given below in Sections 2 and 3. 

 

Long Term Digital Preservation (LTDP) is the ability to sustain the understandability and usability of digital 

objects in the future regardless of changes in technologies and designated communities that create and 

consume these digital objects. The core standard in LTDP is Open Archival Information System (OAIS), an 

ISO standard since 2003, revised in 2012 (ISO 14721:2012)  [1]. OAIS specifies the terms, concepts and 

reference models for a system dedicated to preserving digital assets for a designated community. OAIS 

defines a functional model, entities and the flows among them. The basic stored object is Archival 

Information Package (AIP). It is a composite object that includes raw data and additional metadata needed to 

interpret the data in the (long term) future. 

 

Preservation DataStores (PDS) is an OAIS-based preservation aware storage system. It supports both bit 

preservation (the ability to retrieve the bits in the face of physical media degradation or obsolescence, 

corruption or destruction) as well as logical preservation (preserving the understandability and usability of 

the data, despite changes that will take place in servers, operating systems, data management, products, 

applications). 

 

PDS packages raw data with its metadata into a self-contained AIP, logs its provenance, and assures its 

integrity (typically by calculating its signature – fixity). It handles AIP repackaging and transformation. One 

of the innovative features of PDS is that it offloads computation to the underlying storage to decrease 

probability of data loss, simplify the applications, and provide improved performance and robustness. It uses 

a Storlet Engine that manages, deploys and executes storlets - restricted computation modules that run on 

storage systems close to the data that it processes. PDS uses the Storlet Engine to perform periodic or on-

demand integrity checks, format transformations, analytics and other operations close to the data. 

 

Storage Clouds (public or private) are recent models for storage provisioning. They are highly distributed 

(employ multiple storage nodes), scalable and virtualized environments that offer availability, accessibility 

and sharing of data at low cost. They focus on storage and data services, typically being agnostic to the 

content of the data they service. They emphasize availability to the data, some reliability and scalability, all 

at competitive costs.  

 

One example of cloud storage system is the OpenStack Swift object storage  [6]. OpenStack is an emerging 

open source software for building cloud computing platform for public and private clouds, with a huge 

amount of interest and rapidly growing community. The OpenStack software includes the Swift object 

storage that we will utilize in work package 7. 
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1.4 The ForgetIT Preservation Storage System Solution Approach 

Storlets are a good candidate for providing automated reliable periodic or on-demand computational 

processes executed at low cost. To meet the ForgetIT goals, we wish to exploit the storage node processing 

capabilities and extend the PDS storlets (computation modules that run on the storage servers close to the 

data) to handle typical ForgetIT use cases. 

 

Server-based object storage systems are ideal for executing storlets. They typically need to serve large data 

sets accessed from anywhere over the WAN. Also, the commodity servers typically have powerful CPUs 

that are underutilized. Exploiting the unused CPU cycles for executing storlets within the data residency is 

beneficial, and the savings of bandwidth and infrastructure are expected to be significant. Additionally, 

security and compliance are improved. The best candidate cloud storage for our proposed LTPD storage 

framework is OpenStack Swift (see more details below). However, current cloud storage platforms are 

designed for general use and are not particularly suited for LTDP. For example, automated reliable versatile 

periodic integrity checks at the data level are missing. Hence, we opted to enhance existing open cloud 

storage platforms (e.g., OpenStack) with various new capabilities, to enable new storage level automated 

computational processes as inspired by the ForgetIT use cases. Some examples of new planned processes 

are: format transformations (for long-term availability), summarization (as part of managed forgetting), 

redundancy detection etc. 

 

In order to define the required enhancements to existing cloud storage, we summarize a gap analysis between 

the capabilities of current systems and those required by the ForgetIT preservation storage system. 
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2 Survey of State of the Art of Long Term Digital Preservation 
While the state of the art in long term digital preservation is extensive and includes several technologies and 

EU projects, this chapter is mainly focused on the state of the art that relates to storage. 

 

2.1 Long Term Digital Preservation 

The growing need to preserve large volumes of digital content for decades by organizations and private 

citizens is further increased by regulatory compliance and legal issues. Data types that need to be preserved 

include mail, medical records, financial accounts, aircraft designs, etc. 

 

Long Term Digital Preservation (LTDP) is defined as the ability to sustain the understandability and 

usability of digital objects in the distant future regardless of changes in technologies and in the designated 

communities that create and/or consume these digital objects. LTDP is a special case of digital archiving, 

where the lifetime of the stored data may exceed the lifetime of the application and format used to create and 

interpret the data. Consequently, in addition to its legacy roles, preservation-aware storage must handle also 

repackaging and data transformation. 

 

LTDP includes bit preservation and logical preservation. Bit preservation is the ability to retrieve the bits in 

the face of physical media degradation or obsolescence, corruption or destruction due to errors or malicious 

attacks, or even environmental catastrophes such as fire and flooding. Logical preservation means preserving 

the understandability and usability of the data, despite changes in servers, operating systems, data 

management products, data formats applications and even users over the long term. Additionally, logical 

preservation requires maintaining the provenance of the data, along with its authenticity and integrity, so it 

may be verified that only legitimate users have accessed the data and that the data is reliable and trustworthy. 

 

Logical preservation is a challenging open research area attempting to enable future understanding of the 

preserved data by future technologies and by future users that may hold a different knowledge base from that 

of the data producers. To support logical preservation, preservation-aware storage needs to associate the raw 

data with metadata that describes its context, logs its provenance, and assures its fixity, perform data 

transformation, replace obsolete and add new formats. Hence, the LTDP storage subsystem should attempt to 

encapsulate the raw data with its complex interrelated metadata objects. 

 

The core current standard for LTDP is Open Archival Information System (OAIS). 

 

2.2 The core standard for LTDP: Open Archival Information System (OAIS) 

OAIS is an ISO standard for LTDP since 2003, revised in 2012 (ISO 14721:2012)  [1]. It specifies the terms, 

concepts and reference models for a system dedicated to preserving digital assets for a designated 

community. OAIS defines a functional model and the basic stored objects. The entities of the functional 

model and the flows among them are depicted in Figure 1. 

 

Our technology in work package 7 for preservation aware computational storage includes PDS in the cloud 

with the Storlet Engine. This technology takes the role of the archival storage entity in the OAIS functional 

model. 
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Figure 2: OAIS functional model and PDS 

 

The basic high level structure for stored OAIS object is the Archival Information Package (AIP). It is a 

composite object that includes raw data and additional metadata. An AIP contains the content information, 

including the Content Data Object or raw data which is the focus of the preservation, as well as the recursive 

Representation Information (RepInfo) needed to render the object intelligible to its designated community. 

The representation information may include information about the hardware and software environment 

needed to view and interpret the content data object. 

The other part of an AIP is the Preservation Description Information (PDI), which is further divided into four 

sections: 

• Reference — globally unique and persistent identifiers for the content data object  

• Provenance — chain of custody, the history and the origin of the content information custody  

• Context — relationships of the content information to its environment  

• Fixity — a demonstration that the particular content information has not been altered in an 

undocumented manner  

The OAIS AIP logical structure is depicted in the figure below  
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Figure 3: OAIS AIP logical structure 

 

The AIP metadata are essential for logical preservation of the raw data, and one important metadata is 

generally termed Representation Information (RepInfo). The RepInfo themselves are data objects, hence, 

they are also stored as AIPs, and recursively have their own RepInfo etc., creating a RepInfo network. The 

recursion ends when an agreed common knowledge base of the designated community that uses the data is 

reached. As improved preservation aware storage subsystems emerge, it will become possible to incorporate 

some of the OAIS processes into them. 

 

2.2.1 Archival Storage 

The Archival Storage entity (see OAIS functional model figure) provides the services and functions for the 

storage, maintenance and retrieval of AIPs. Archival Storage functions include: receiving AIPs from Ingest 

requests and providing AIPs to Access requests, storing the AIPs, managing the storage hierarchy, refreshing 

the media, performing routine and special error checking, and providing disaster recovery capabilities. 

 

The Receive Data function receives a storage request and an AIP from an Ingest request and stores the AIP 

on permanent storage within the archive. The Ingest request may indicate data object features like anticipated 

frequency of utilization of the data, in order to allow for appropriate data placement for the AIP (e.g., type of 

media). 

 

The Provide Data function provides copies of stored AIPs in response to Access requests. 

 

The Manage Storage Hierarchy function places the AIP on the appropriate media, based on storage 

management policies, operational statistics, or directions from Ingest request. These include on-line, off-line 

or near-line storage, required throughput rate, maximum allowed bit error rate, or special handling or backup 

procedures. This function also provides operational statistics. 

 

The Replace Media function provides the capability to reproduce the AIPs over time on another media. The 

migration selects a storage medium, taking into consideration the expected and actual rates of errors 

encountered in various media types, their performance, and their costs of ownership. This function may 

perform Refreshment, Replication, and Repackaging (e.g., migration to new media under a new operating 

system and file system). 

 

The Error Checking function provides statistically acceptable assurance that no components of the AIP are 

corrupted during any internal Archival Storage data transfer. A standard mechanism for tracking and 

verifying the validity of all data objects within the archive may also be used (e.g., CRCs or some other error 

checking mechanism). 
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The Disaster Recovery function provides a mechanism for duplicating the digital contents of the archive 

collection and storing the duplicate in a physically separate facility. 

 

2.3 Self-contained Information Retention Format (SIRF) 

The Self-contained Information Retention Format (SIRF) is a storage container format for preservation 

objects that provides a catalog with metadata related to the entire contents of the container, as well as to the 

individual objects and their interrelationship.  

 

Recognizing the significance of standardization in storage for long term retention, the Storage Networking 

Industry Association (SNIA) made progress towards this goal. A survey with more than 250 participants 

showed that over 80% of respondents had retention requirements of at least 50 years  [40]. The top external 

factors driving these retention requirements were mainly business risks and compliance with regulations. 

Consequently, SNIA formed the Long Term Retention (LTR) Technical Working Group (TWG) 

(http://www.snia.org/ltr) in 2008 to address storage aspects of digital retention.  The mission of LTR, which 

is co-led by IBM Research-Haifa and HP, is to lead storage industry collaboration, and develop technologies, 

models, educational materials and practices related to retention and preservation. 

 

The LTR TWG is working on Self-contained Information Retention Format (SIRF) to create a standardized 

vendor-neutral storage format that will allow interpreting preservation objects in the future, even by systems 

and applications that do not exist today. SIRF provides strong encapsulation of large quantities of metadata 

with the data at the storage level, and enables easy migration of the preserved data across storage devices. In 

contrast to the semantics of traditional file systems, which include only limited metadata for each file, SIRF 

provides rich metadata needed for preservation and ensures its grouping with the information objects.   

 

Archivists and records managers of physical items such as documents, records, etc., avoid processing each 

item individually. Typically, they gather together a group of items that are related in some manner - by 

usage, by association with a specific event, by timing, etc. - and then perform all of the processing on the 

group. The group itself may be known as a series, a collection, or in some cases as a record or a record 

group. Once assembled, an archivist will typically place the series in a physical container (e.g., a file folder 

or a filing box of standard dimensions), stick a label that marks the container with a name and a reference 

number, and place the container in a known location.  

 

SIRF  [41] [42] proposes an approach to digital content preservation that leverages the processes of the 

archival profession, thus helping archivists remain comfortable with the digital domain. One of the major 

needs that will make this strategy usable is the availability of a digital equivalent to the physical container. 

This archival box or file folder defines a set or series, and can be labeled with standard information in a 

defined format to allow retrieval when needed. SIRF is intended to be that equivalent - a storage container 

format for a set of (digital) preservation objects that also provides a catalog with metadata related to the 

entire contents of the container, as well as to the individual objects and their interrelationship. This logical 

container makes it easier and more efficient to provide many of the processes that are needed to address 

threats to the digital content. Easier and efficient preservation processes, in turn, lead to an increase in 

scalability and reduction in cost for preservation of digital content. 

The following figure illustrates the components included in the SIRF container:  

• A magic object that identifies whether this is a SIRF container and gives its version. 

• Preservation objects that are immutable. The container may include multiple versions of a 

preservation object.  

• A catalog that is updateable and contains metadata needed to make the container and its preservation 

objects portable into the future without relying on functions external to the storage subsystem. It 

contains metadata relating to the entire contents of the container as well as to the individual 

preservation objects and their relationships.  
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Figure 4: SIRF container 

 

Both cloud and tape technologies are viable alternatives for storage of big data. SNIA supports their 

standardization. The SNIA Cloud Data Management Interface (CDMI) provides a standardized interface to 

create, retrieve, update, and delete objects in a cloud. The SNIA Linear Tape File System (LTFS) takes 

advantage of a new generation of tape hardware to provide efficient access to tape using standard, familiar 

system tools and interfaces. The LTR TWG also works on how to combine SIRF with LTFS and SIRF with 

CDMI to address LTDP challenges. 
 

 

2.4 Previous Works Related to LTDP Storage 
Baker et al.  [24] [25] suggest bit preservation guidelines and alternative architectural solutions that focus on 

replication across autonomous sites, reduced per-site engineering costs, and the ability to scale over time and 

technologies. 

 

Dappert and Enders  [27] discuss the importance of metadata in a long term preservation solution. The 

authors identify several categories of metadata, including descriptive, preservation related, and structural, 

arguing that no single existing metadata schema accommodates the representation of all categories. The 

work surveys metadata specifications contributing to long term preservation. 

 

Rhea et al.  [38] describe an archival storage layer which uses content-addressed storage (CAS) to retain 

nightly snapshots of users' disks indefinitely. In addition, they also snapshot the entire virtualized desktop. 

Their focus is on efficiently leveraging on-the-shelf storage to create a personalized archive. Arguably, 

preserving the entire virtualized desktop does not scale or age well. 

 

With regard to the more general storage aspects of digital preservation, previous works  [24] [25] [43] address 

authentication as well as security issues. Some works  [24] explore the needs of long-term storage and present 

a reliability model and associated strategies and architectures. 

 

The e-depot digital archiving system of the National Library of the Netherlands (KB)  [44] is composed of 

the Digital Information Archiving System (DIAS). The e-depot library conforms to the OAIS standard, and 

addresses both bit and logical preservation. 

 

Provenance-aware storage system (PASS)  [45] and data modeling for provenance  [46] track the provenance 

of data at the storage level. The provenance of data is tracked at the file system level, and does not employ 

an auxiliary database for provenance management. They suggest offloading storage related activities to the 
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storage level (similar to the PDS work  [3] [4] [15] [21] [26] – see below). In  [46] the authors argue that due to 

the common ancestry relations of provenance data, these data naturally form a directed graph. Hence, 

provenance data and query models should address this structure. A semi-structured data model with a special 

query language (PQL) was used, taken from the object oriented database community. 

 

The LOCKSS  [48] system (Lots of Copies Keep Stuff Safe) generates several copies of each object to 

enhance its resiliency to data loss. 

 

The Storage Resource Broker (SRB)  [49] developed by the San Diego Supercomputing Centre (SDSC) is a 

logical distributed file system with a client-server architecture. It presents the user with a single global 

logical namespace or file hierarchy. SRB is a data grid technology middleware built on top of file systems, 

archives, real-time data sources, and storage systems. Several preservation projects, such as the preservation 

environment for the National Archives and Records Administration (NARA), utilize the SRB as the 

foundation for their archives. The SRB code was recently extended into a new system called iRODS  [50], 

Intelligent Rule-Oriented Data management System. The iRODS rule engine can be useful for implementing 

preservation-specific policies.  

 

Venti  [47] is a block-level network storage system intended for archival data. In itself, it does not provide the 

services of a file or backup system, rather the backend archival storage for these types of applications. In the 

system, a 160-bit SHA-1 hash of the data (called a fingerprint) acts as the address of the data, which enforces 

a write-once policy. Data blocks cannot be removed; making Venti specialized for permanent or backup 

storage. Venti provides inherent integrity checking of data by computing the fingerprint on the retrieved data 

and comparing it to the fingerprint held by the application. 

 

You et al.  [31] presented PRESIDIO: a scalable archival storage system that detects similarity and attempts 

to reduce used space. 

 

Deep Store  [51] is archival storage architecture for a large-scale storage system capable of efficiently and 

reliably storing immutable data. The Deep Store model for storage uses an architecture consisting of four 

primary abstractions: storage objects, physical storage components, software architecture, and a storage 

interface. Space efficiency is achieved by a content analysis phase, which includes PRESIDIO, a new 

lossless data compression framework that incorporates inter-file compression with a content-addressable 

object storage mechanism. The reliability of files with shared data is provided by using variable levels of 

redundancy. The metadata is stored in XML format and methods for searching and versioning the metadata 

are provided. 

 

The OCLC Digital Archive  [29] provides a secure storage environment for master files and digital originals 

for libraries (backups, disaster recovery, periodic fixity check, virus check, manifest and format verification). 

  

Bessani et. al.  [30] presented DepSky: a storage system in a cloud-of-clouds with a set of Byzantine quorum 

system protocols, cryptography, secret sharing, erasure codes. One of the key objectives of DepSky is to 

reduce cost. DepSky and PRESIDIO suggest advanced protocols and implementations for specific data 

(static) management functions. 

 

Muniswamy-Reddy et al.  [28] introduce protocols for cloud that collect and track the provenance of data 

objects. 

 

Offloading data maintenance functions from the application to the storage system is an ongoing trend. 

Functionality such as bit-to-bit data migration, block level data integrity, and encryption are commonly 

carried out by advanced intelligent storage subsystems. 

 

The requirements for preservation-aware storage are characterized in a position paper  [26] and Preservation 

DataStores (PDS)  [4] [15] [21] was such a system developed by IBM as part of the CASPAR EU project. It 

was later extended and adapted to a cloud version in PDS-Cloud  [3] as part of the ENSURE EU project. PDS 

and PDS Cloud are OAIS based LTDP systems that provide logical preservation coupled with extended 

offloading of data related functions to the storage. Since these works form the basis for the ForgetIT 
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preservation-aware storage system, we devote separate Sections (Sections 3 and 4, see below) to a detailed 

description of PDS and PDS-Cloud. 

 

A detailed description of the PDS provenance and authenticity management was presented in  [52]. 

 

An extensive bibliography of digital preservation and curation has been compiled by Bailey  [39]. It covers 

multiple subjects, including models, formats, ongoing projects and research. 

 

2.5 Cloud Technologies and Gap Analysis 

2.5.1 Cloud Technologies 

2.5.1.1  General 

Cloud technology is emerging as an infrastructure suitable for building large and complex systems. Storage 

and compute resources provisioned from converged infrastructure and shared resource pools present a cost 

effective alternative to the traditional in-house data center. The cloud provides new levels of scalability, 

elasticity and availability, and enables simple access to data from any location and any device. 

 

LTDP can benefit from cloud technology. With its many vendors, open interfaces and subscription payment 

model, cloud storage offers the flexibility needed to address the dynamically evolving requirements of 

preservation. The potentially unlimited capacity provides inherent scalability and redundancy. In a 

preservation system, the preservation object (e.g., AIP) holds references (internal and to other objects on 

possibly other clouds). In cloud storage, objects exist within containers, which may be useful for referencing. 

The cloud typically provides a data model of objects that include raw data and user-defined key-value 

metadata pairs, treated as a unit. 

 

Cloud storage is a good solution for latency-tolerant applications (e.g., backup and archiving), and for digital 

preservation repositories. Hence, the cloud is an attractive platform for building LTDP (e.g., OAIS based) 

storage and compute resources, provisioned from converged infrastructure and shared resource pools. 

2.5.1.2 Cloud Data Management Interface (CDMI) 

Efforts to unify cloud APIs across the multitude of vendors and to cater to diverse application requirements 

have lead to the specification of the CDMI (Cloud Data Management Interface)  [19]. CDMI is a SNIA 

architecture standard. 

2.5.1.3 Current Cloud Platforms 

The basic features of all current Cloud platforms are similar. Some of the well known platforms are Amazon 

S3  [53] and EC2 (enterprise)  [54], Openstack  [6] Swift  [55] and Nova (private, open source)  [56], Windows 

Azure Storage  [57], Eucalyptus  [10], Rackspace  [11], EMC Atmos  [12], DuraCloud  [13] open source, and 

the recent VISION Cloud  [58]. All cloud platforms offer a RESTful  [14] interface, and the URI path format 

is similar (although some HTTP headers are different). The security and authorization models vary among 

the platforms. 

 

Amazon S3 has a two-level data organization: buckets and objects, up to 5 terabytes in size. Each object has 

system/user metadata name-value pairs. 

 

In Windows Azure Storage data is in the form of Blobs within containers, two types of blobs are available: 

block blobs and page blobs (the latter are used as virtual hard drives). Page blobs maximum size is 1TB. 

Block and page blobs can have metadata name-value pairs. 

 

Rackspace Cloud Files is powered by OpenStack3, uses REST APIs, and has a two level data model of 

objects and containers. Object size limit is 5GB, optional concatenation of objects via a manifest object is 

supported. The metadata for objects and containers is limited to 90 key-value pairs and total size of less than 

4KB. 
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EMC's Atmos is a cloud storage platform to manage content with large amounts of data. It is not a clustered 

file system or a network attached storage product, but cloud-optimized storage. Data is distributed and 

accessed on a global scale. Scriptable policies are available for automated data placement and control of data 

handling. Metadata-driven policy-based management supports data placement, replication, protection, 

compression, de-duplication, retention (but not encryption). Replication may be synchronous or 

asynchronous. Atmos runs in a virtualized environment or within a specialized EMC sold hardware. Atmos 

has two major categories of metadata: system metadata generated automatically and cannot be modified by 

users, and user-defined metadata. Metadata may be non-listable or listable by queries or search. Search may 

only be performed on the metadata keys, not on the values. Key-value pairs are restricted to 1 KB in size. 

The user metadata can be used to define triggers for policies. Atmos uses REST and SOAP based APIs, and 

supports CIFS/NFS traditional file access. It has two data models: an object interface and a namespace 

interface, which is similar to a file system with folders. Atmos has ACLs to control data and metadata 

access. 

 

The VISION Cloud approach extends EMC's Atmos with rich metadata, and supports active indexing inside 

the storage infrastructure. It extends metadata to support relations between objects, enabling construction of 

content networks dynamically and automatically by discovery. VISION uses storlets co-located with the data 

that can be activated by events such as uploading of a new object, adding metadata to it etc. VISION 

provides scalable, metadata-rich object services with a new data model not compatible with POSIX. It 

leverages distributed file systems rather than expand their capabilities. VISION addresses Big Data, 

managing (unstructured) metadata, content centric access – it provides APIs for retrieval and finding. 

VISION targets efficient management of metadata and scale, focuses on key-value stores and Big Table 

databases. VISION supports metadata search (both on keys and/or values) access, retrieval and statistics. 

 

Metadata queries are not supported in Amazon S3, Google Cloud Storage, Windows Azure Storage, 

Rackspace Cloud Files. EMC's Atmos supports only queries on metadata keys not metadata values, queries 

on both metadata keys and values are supported by VISION. 

 

 DuraCloud's goal is a fully integrated environment of services and data across multiple cloud providers, 

supporting data storage, replication and access, as well as data preservation services such as format 

transformation and fixity checks. However, DuraCloud is not compliant with the OAIS reference model. 

 

Swift and S3 do not support filtering (searching) of object by tags (metadata). The VISION Cloud, 

developed in the framework of the VISION EU project, provides some metadata query support. 

 

An important difference between cloud platforms is their locality features, which affects their security: 

Swift is a private cloud and storage can be entirely under the control of a single client organization. On the 

other hand, S3 is a public service shared by many customers, and storage is located in the public domain. 

 

Offloading some preservation maintenance procedures to the cloud requires compute cloud services along 

with the storage cloud. This compute/storage cloud option is supported by, e.g., Amazon EC2 and Openstack 

Nova. 

2.5.2 Storage Clouds Gap Analysis for Supporting LTDP 

With regard to usability for LTDP, many of the relevant features of the various cloud storage platforms are 

very similar. Their properties and deficiencies are given below. 

2.5.2.1 Bit reliability: missing recurring fixity check and versatile algorithms 

Guarantees of bit reliability in the cloud are insufficient for preservation systems. Storage cloud platforms 

generally perform a fixity check upon storing an object, but do not have an option to repeat this check 

periodically. Also, regulatory requirements for digital preservation may require performing fixity checks 

using multiple algorithms, whereas cloud platforms usually support one predefined method. 
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2.5.2.2 Data lock-in: cannot extract entire data 

Cloud systems currently suffer from data lock-in, where there are no easy means to get the data out of the 

system in its entirety, reliably and efficiently. This poses a great risk as services providers may go out of 

business or become unreliable over time. 

2.5.2.3 Certification and trust: no support for auditing certification and security compliance 

Storage clouds lack support for auditing, certification and trust, including secure access. This is critical in 

preservation of commercial and business oriented data, in which evidence of regulatory compliance is 

required. Specifically, preservation related regulatory requirements entail support for data encryption, 

anonymization, periodic auditing, replication, versioning, etc. 

2.5.2.4 Metadata: limited support in size, missing metadata search 

One of the key concepts in the OAIS model for preservation is the extensive use of metadata, strongly 

coupled with the raw data as part of the AIP. Moreover, metadata is likely to change and grow significantly 

in size during the extended lifetime of the AIP. Storage clouds today have rather limited support of metadata. 

The allowable space for metadata (per object) is much too small for the extensive size of preservation 

metadata. Most clouds do not provide means to search their metadata, i.e., the ability to filter objects by tags. 

2.5.2.5 Event tracking: partial only provenance 

Storage clouds do not capture events that are part of the object provenance and need to be recorded for 

preservation, such as access to objects, media refresh events, etc. This is particularly crucial in the cloud, 

because data in the cloud can be widely shared. Provenance is critical for consumers to verify data 

authenticity and identity. It is of importance to keep the provenance together with the data, to guarantee 

consistency. 

2.5.2.6 Workload management: need different cost model for LTDP 

Currently, storage clouds are mostly used for backup or for applications requiring a high level of sharing, 

downloads and streaming. Therefore, the cost models today are well suited to this type of usage. Preservation 

systems pose a different type of workload, requirements, and SLAs resulting in possibly different cost 

models. For example, consumer access to preserved data may be infrequent, resulting in less demand for 

streaming and downloading. On the other hand, preservation maintenance may utilize more efficient (and 

less expensive) access to the preserved objects directly on the cloud, and this is typically performed in bulk 

on many objects. 

2.5.2.7 Storage and compute synergy: lacking 

Computational support is needed for preservation, as storage actions are performed over time. Data 

management functionalities may be offered transparently in the cloud (e.g., handling data replication and 

disaster recovery). The current cloud storage/compute synergy is insufficient for a digital preservation 

solution. Migration and transformation need to be more flexible and configurable as part of the Preservation 

Digital Asset Lifecycle (PDAL). Extended computations operated by the user in the storage/compute cloud 

are needed. 

2.5.2.8 Logical preservation 

As emphasized above, preservation is more than just ensuring the bit integrity of the object content. It must 

also support logical data preservation, such that the content is understandable in the future. In order to use 

cloud based preservation, a candidate cloud platform should be extended to bridge the above mentioned 

gaps, as current cloud environments do not provide built-in support for logical preservation. 

 

As part of PDS Cloud  [3], we have taken steps towards this goal. We have leveraged and extended the 

availability of storage/compute cloud synergy to perform cloud based data-related computations (Virtual 

Appliances – see details in Section 4 below) that may assist in the future interpretation and visualization of 

digital content, in support of logical preservation. 
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2.6 OpenStack Object Storage 

OpenStack Object Storage (code-named Swift) is an open source software for creating redundant, fault-

tolerant, eventually consistent object storage. It a distributed scalable system and uses clusters of 

standardized servers to store petabytes of accessible data. It is not a file system or real-time data storage 

system, but rather a long-term storage system for a more permanent type of static data that can be retrieved, 

leveraged, and then updated if necessary. Primary examples of data that best fit this type of storage model 

are virtual machine images, photo storage, email storage and backup archiving. Having no central “brain” or 

master point of control provides greater scalability, redundancy and permanence. Objects are written to 

multiple hardware devices in the data center, with the OpenStack software responsible for data replication 

and integrity across the cluster. Storage clusters can scale horizontally by adding new nodes. Should a node 

fail, OpenStack works to replicate its content from other active nodes. 

 

The data model includes a hierarchy of accounts (tenants), containers and objects. The external interface to 

this data model is via the proxy server. 

 

The Proxy Server is responsible for the external interface. It includes an HTTP server that implements the 

Swift RESTful API. It coordinates the read and write requests from clients and implements the read and 

write guarantees of the system. When a client sends a write request, the proxy ensures that the object has 

been successfully written to disk on the storage nodes (two of three replicas) before responding with a code 

indicating success. For each request, it will look up the location of the account, container, or object in the 

ring (see below) and route the request accordingly. It will also handle a large number of failures. 

When objects are streamed to or from an object server, they are streamed directly through the proxy server to 

or from the user namely the proxy server does not spool them. The proxy services are more CPU and 

network I/O intensive. Several of the services rely on Memcached for caching certain types of lookups, such 

as auth tokens, and container/account existence.  

 

The Object Server that exposes an internal RESTful API is a very simple blob storage server that can store, 

retrieve and delete objects stored on local devices. Each object is stored as a single binary file on disk, and 

object metadata is stored in the files extended attributes (xattrs). This simple design allows the objects data 

and metadata to be stored together and replicated as a single unit. Each object is stored using a path derived 

from the object names hash and the operations timestamp. The object services are more disk and network I/O 

intensive. 

 

The Container Server exposes an internal RESTful API and its primary job is to handle listings of objects. 

It does not know where those objects are, just what objects are in a specific container. Although containers 

cannot be nested, they are conceptually similar to directories or folders in a file system. Users may set 

metadata on individual containers, and containers provide a listing of each object they contain. The listings 

are stored as sqlite database files, and replicated across the cluster similar to how objects are. There is no 

limit to the number of containers that a user may create within a swift account, and the containers do not 

have globally-unique naming requirements. Statistics are also tracked that include the total number of 

objects, and total storage usage for that container. The container services are more disk and network I/O 

intensive. 

 

The Account Server is very similar to the Container Server, excepting that it is responsible for listings of 

containers rather than objects. Users can set metadata on their account, and swift aggregates usage 

information here. The account services are more disk and network I/O intensive. 

 

2.7 Cloud Compute and Storage 

Amazon Elastic MapReduce (Amazon EMR)  [61] is a web service that enables to easily and cost-effectively 

process vast amounts of data. It utilizes a hosted Hadoop framework running on the infrastructure of 

Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). It 

allows dynamic provisioning of storage capacity for performing data-intensive tasks. It releases the user 

from setting up, management or tuning of Hadoop clusters or the compute capacity upon which they reside. 
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Apache Hadoop  [59] is an open-source software framework that supports data-intensive distributed 

applications, licensed under the Apache v2 license. It supports the running of applications on large clusters 

of commodity hardware. Hadoop is designed to run on normal hardware, provide fault-tolerance, 

deployability on low-cost hardware, serve big data. It uses parallelization approach and divides individual 

files into chunks sent to different computers. Its scale is hundreds or thousands of servers. It uses a master-

slave or primary-secondary architecture, and there is a cluster single master named NameNode. 

 

OpenStack Savanna  [60] project attempts to enable users to easily provision and manage Hadoop clusters on 

OpenStack. Amazon provides Hadoop for several years as Amazon Elastic MapReduce (EMR) service. 

Savanna aims to provide users with simple means to provision a Hadoop cluster by specifying several 

parameters like Hadoop version, cluster topology, nodes hardware details. Savanna quickly deploys the 

cluster and provides means to scale already provisioned cluster by adding/removing worker nodes on 

demand. It is designed as an OpenStack component managed through REST API. Hortonworks  [61] Mirantis 

and Red Hat are contributing engineering resources to Project Savanna. 

 

The above technologies typically bring the data to the compute nodes that reside in the same data center. The 

required computations are performed by utilizing the CPU cycles of the compute nodes. In contrast, in PDS 

and the Storlet Engine, the relevant computations are performed (close to the data) utilizing the CPU cycles 

of the storage nodes. 
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3 Preservation DataStores (PDS) in the Cloud 

3.1 What is PDS 

PDS is an OAIS-based advanced preservation aware storage system that aims to provide a robust 

infrastructure for LTDP systems. The first version was designed and built by IBM for the CASPAR EU 

project in 2007. Then, it was extended for clouds environments in the ENSURE EU project that started in 

2011, and the extended technology is called PDS Cloud. The terms PDS and PDS Cloud are used alternately 

to describe the full technology. 

 

PDS Cloud provides OAIS support on top of generic clouds, and can operate over multiple diverse clouds. 

The figure below gives a high-level overview of the PDS Cloud. At the top, PDS Cloud provides an OAIS-

based interface for operations on AIPs (e.g., ingest, access, delete), as well as an interface for preservation 

actions (e.g., check fixity, transform, add aggregation). At the bottom end, it utilizes various generic cloud 

storage and compute from different providers. In addition, the system includes a Storlet Engine that can be 

plugged into a private cloud or object storage to execute computation modules (called storlets) close to the 

data.  

 

 

 

Figure 5: PDS Cloud system overview 

 

PDS Cloud transforms the logical OAIS AIP information object into physical storage object(s). It performs 

preservation-related computations functions within the storage system via storlets (see section below for 

explanation and details on storlets). 

 

3.2 PDS in CASPAR 

 

PDS first version was built in CASPAR on top of an Object Storage Device (OSD)  [21]. It is composed of a 

layered architecture, and employs open standards such as OAIS, XAM and OSD. It provides strong 

encapsulation of large quantities of metadata with the data at the storage level. 

 

PDS in CASPAR is aware of the AIP structure and handles managing its sections. These functions include 

adding and managing RepInfo and validating their referential integrity, tracking provenance events, 

periodical computing of fixity, and performing migration. Moreover, PDS can perform transformation on the 

AIPs, relieving applications from data and I/O intensive tasks. 
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PDS supports basic AIP functions such as ingest (store) and access (retrieve), as well as setting/getting AIP 

metadata information, AIP versioning and unique identification. It includes a PDI Manager that handles PDI 

metadata-related actions (e.g., AIP provenance records, reference integrity) and a RepInfo Manager that 

manages all RepInfo related activities (e.g., maintaining a RepInfo repository, adding new RepInfos). 

 

PDS implements and supports the CASPAR OAIS compliant authenticity model that includes authenticity 

protocols and steps  [52]. It evaluates authenticity without application intervention or increase in network 

traffic, and avoids the associated security risks. 

 

Currently, PDS does not support querying the provenance contents. 

 

3.3 PDS in ENSURE 

Cloud storage services provide opportunities to support novel models for long term preservation of digital 

assets, leveraging the cloud's inherent scalability and redundancy to dynamically adapt to evolving needs of 

digital preservation. The research on PDS Cloud was performed as the storage infrastructure component of 

the ENSURE EU project (Enabling kNowledge, Sustainability, Usability and Recovery for Economic Value) 

 [2]. 

 

PDS Cloud  [3]  [63] is an OAIS-based preservation aware storage service that engages storage and compute 

clouds from diverse providers. It is a subsequent extended version of the OAIS-based PDS used in CASPAR 

that operates in a multi-cloud environment. It stores the AIPs in (possibly a variety of several) storage clouds 

via APIs provided by jclouds  [7]. PDS Cloud utilizes the synergy of storage cloud and compute cloud. It 

introduced the notion of Virtual Appliances (see next subsection) that provide a compute/storage cloud 

synergy. 

 

3.4 PDS extensions for the cloud 

The gap analysis of existing storage clouds revealed that simply storing data onto the cloud is not an 

adequate solution for digital preservation repositories. PDS Cloud is designed to overcome some of these 

gaps. Extending PDS, PDS Cloud inherited the logical preservation and basic supported LTDP operations, 

and materializes the logical concept of a preservation information-object into a physical storage object. 

However, the physical storage object is kept in a storage cloud. 

PDS Cloud offloads to the storage some preservation-related computations by using storlets. Note, however, 

that supporting storlets over a storage cloud entails enhancements to the storage cloud platform (e.g., 

enhancement for OpenStack Swift). 

 

The additions of PDS Cloud (over PDS) address new cloud-specific goals and features. The main additions 

are: 

1) Support access to multiple cloud storage and cloud compute platforms, as well as enable migration 

of data between different clouds. 

2) Provide a flexible data model for multi-tenant multi-cloud environments. 

3) Enhance future understandability of content by supporting data access using cloud based virtual 

appliances (VAs). 

4) Offer advanced OAIS-based services in the cloud, such as fixity (integrity) checks, provenance and 

auditing that complement the generic clouds capabilities. 

5) Provides a Storlets Engine (pluggable modules in the storage cloud) running storlets in a sandbox 

within the storage cloud. 

 

3.5 Virtual Appliances (VAs) 

Emulation techniques for interpretation and visualization of digital contents have been used to assist in 

logical preservation  [32] [33] [34] [35] [36] [37]. Yet, developing and maintaining emulation tools in each 

environment and for each information type may be too expensive to be a common solution for long term 

preservation. 
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Our approach advocates using an alternative that leverages the compute cloud instead of using specialized 

emulation systems. A virtual appliance (VA) is a virtual machine image (VM image) with an operating 

system and application packaged together as a pre-installed system image for a virtualized environment (e.g., 

KVM, Xen, VMware). The user runs the VA on a compute cloud (e.g., Amazon EC2, Rackspace Cloud 

Servers or OpenStack Nova) whereas the data resides on a storage cloud. PDS Cloud leverages a 

storage/compute cloud synergy to automate the provisioning of VAs. 

 

The preserved information can be interpreted by the deployed VAs that hold the designated rendering 

software. VAs are thus an attractive alternative to specialized emulation environments. They are maintained 

transparent to regular users. 

 

VAs are created by ingesting them into the PDS Cloud system as an OAIS AIP, which is designated (via 

special RepInfo) with the role of VA. VA Security is important, since PDS Cloud must guard against 

malicious intruders abusing the power of VAs, or legitimate users overreaching their privileges and 

accessing data that they have no permission to access. To this end, the current PDS Cloud solution limits the 

number of ports that accept incoming traffic. 

 

3.6 Data Model 

Enterprises using an archiving storage service typically organize their data in multiple collections having 

different defined policies and facilities for their data management, based on criteria such as information type, 

value to the organization, and storage cost. As the needs of the organization evolve over time, the data 

management profile of a collection should be dynamically configurable. Also, as cloud technology advances, 

it should be possible to easily migrate data to another cloud platform and leverage new cloud services. 

Ideally, any changes in data management should be completely transparent to the user of the storage service. 

Users should be able to access the data without needing to know underlying details such as the identity of the 

storage cloud providers, and should not have to adapt continuously to changes in configuration.  

 

PDS Cloud data model enables transparent and dynamic configuration of data management in a multi-cloud 

multi-tenancy environment. The top-down data model hierarchy consists of: tenants, aggregations, 

dockets, and AIPs (see Figure below). 

 

Tenant is an enterprise or organization that engages the preservation service. Each tenant has its own 

administrative ownership, regulations and users. For example in a personal use case, the tenant can be the 

person himself e.g. Peter Steiner. 

 

Docket is a grouping of AIPs analogous to a directory in a filesystem. A docket contains zero or more AIPs, 

and has well-defined preservation metadata (key-value pairs). Each docket name is unique within the scope 

of a tenant. For example in a personal use case, the docket can be a specific trip of the person such as a trip 

to Costa Rica or a trip to Edinburgh. 

 

Aggregation is a preservation profile for AIPs. It specifies details of the cloud platforms being used (address, 

credentials, etc.), and defines properties such as fixity (number and type of fixity modules, frequency of 

checks), etc. Every AIP instance is associated with (or belongs in) a specific aggregation. Different versions 

of the same AIP may be associated with different aggregations. The AIPs that belong in a given aggregation 

can be viewed as a collection of preservation objects that share the same preservation characteristics and are 

managed together. For example in a personal use case, we can have an aggregation of family photos that are 

very important to preserve (gold), an aggregation of business photos that are less important to preserve 

(silver), and hobby photos that are the least (bronze). The preservation value as computed by the managed 

forgetting process (see WP3) can be used to support this categorization into the different aggregations. 

 

AIP (Archival Information Package) is the fundamental preserved entity in PDS Cloud. The typical AIP 

contains data in the application domain of the tenant.  
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Figure 6: PDS Cloud Data model 

 

3.7 Storlets 

Offloading data maintenance functions to the storage system is common in many advanced storage systems 

(e.g., data migration, block level integrity, encryption). PDS was the first work to introduce the term storlets 

to denote general purpose (yet restricted) routines that may execute computations on the data close to the 

data within the storage layer (e.g., data transformations). Running within the storage close to the data, 

storlets can reduce the bandwidth required to move bytes to an application (possibly over WAN) for 

processing. It also improves the security and reduces the exposure of private data over the network. Storlets 

provide added flexibility, and consolidate logic that may otherwise require use of several applications. 

Storlets also simplify the LTDP system, which in turn results in higher overall system performance and 

reliability. 

 

For example, a digital preservation system may need to perform periodical data intensive tasks, such as 

periodical validation and data transformation. These may be performed by predefined storlets. A predefined 

storlet itself (e.g., a fixity check script employing multiple algorithms) is stored in PDS as an AIP, whose 

content is the executable to be run (e.g., an operating system script). 

 

3.8 PDS Cloud Architecture  
The PDS Cloud architecture is depicted in the figure below. It constitutes a cloud broker that interconnects 

between the OAIS functions and the multiple diverse clouds (lower layer). It uses an existing multi-cloud 

interface service jclouds  [7]. 
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Figure 7: PDS Cloud architecture 

 

PDS Cloud exposes to the client a set of OAIS-based preservation services such as ingest, access, delete 

of OAIS AIPs. It is assumed that user authentication and authorization to the preservation system are 

performed in the upper levels of the runtime environment before reaching PDS Cloud. 

 

The preservation engine performs all the preservation related functionality. It is composed of several 

handlers: the Request Handler (HTTP server protocol parses, validate), the Cloud Mapping Handler (from 

AIPs to cloud objects), the Storage Handler and the VA Handler. 

 

The core of the preservation engine is comprised by several services: a) AIP Service: ingest, access and 

delete of various types of AIPs (data, RepInfo, etc.) and metadata including provenance and relations among 

the various AIPs, b) Admin Service: tenants management, aggregations and policies, c) Migration Service, 

(future implementation), including transformations of AIPs from one format to another. (According to OAIS, 

migration comprises four functions: refreshment, replication, repackaging and transformation. The first three 

concern bit preservation, whereas transformation is a logical preservation operation), d) Fixity and Audit 

Service: flexible periodic integrity checks on AIPs using a choice of algorithms. 

 

When the AIP Service, Migration Service and Fixity Service require performing data-intensive 

computational tasks, (such as validation, transformation etc.) they may use storlets. This requires extending 

the standard cloud storage capabilities, as current cloud platforms do not support storlets yet. 

 

3.9 PDS is Extensible 
PDS may be used as the storage subsystem in other preservation settings. The original implementation was 

built on top of an Object Storage Device, and another PDS variant was built on top of a plain file system (via 

IBM FileNet content management solution). Other existing solutions such as e-depot digital archiving 
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system of the National Library of the Netherlands (KB)  [44] or the LOCKSS  [48] and PASS  [45] systems, 

may, in principle, be integrated with PDS to provide a more comprehensive LTDP solution. 

 

Given its extensibility and flexibility, PDS and its code are good candidates to be leveraged in the ForgetIT 

framework. It has the potential (with proper extensions as presented below) to support the ForgetIT 

requirements from computational storage services. 
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4 Storlet Engine 

4.1 Overview 

Cloud storage utilizes server-based storage nodes with powerful CPUs to serve large data sets accessed from 

anywhere over the WAN. Taking it to the next step, we would like to exploit the storage node processing 

capabilities to execute restricted computational modules (storlets) within the data residency. The 

Storlet Engine provides the storage cloud with capability to run storlets in a sandbox close to the data. It 

provides a powerful extension mechanism to the cloud storage without changing its code; thus making the 

storage flexible, customizable and extensible. At a high level one can say that storlets in cloud storage are 

analogous to stored procedures in a database. In preservation systems, the storlet is maintained as an AIP, 

since it needs in itself to be preserved. 

 

The benefits of using storlets are: 

• Reduce bandwidth – reduce the number of bytes transferred over the WAN. Instead of moving the 

data over the WAN to the computational module, we move the computational module to the storage 

close to the data. Generally, the computational module has much smaller byte size than the data it 

works on. 

• Enhance security – reduce exposure of sensitive data. Instead of moving data that has Personally 

Identifiable Information (PII) outside its residence, perform the computation in the storage and 

thereby lower the exposure of PII. This provides additional guard to the data and enables security 

enforcement at the storage level. 

• Consolidate logic – expose generic functions that can be used by many applications. Instead of 

multiple applications writing similar code, storlets can consolidate and centralize generic logic with 

extensive or complex processing, and all applications can call these storlets. Additionally, this saves 

building computing infrastructure at the client side. 

• Increase soundness – provide access to the latest preserved sound data. In preservation systems, 

AIPs may have multiple versions created over time, and the storage that manages all these versions 

has the up-to-date information about all versions and their relationship. Additionally, sound 

provenance of the data can be maintained as the actions on the data are done locally. 

 

4.2 Storlet Composition and Sandbox 

A storlet is composed of three parts: 

• Lifecycle management – includes operations such as storlet deployment, storlet configuration and 

initialization, processes and threads management, storlet execution, inter-storlet communication. 

Lifecycle management is provided by the storlet engine. 

• Business logic – the actual functionality of the storlet. This is provided by the application. 

• Services invocation – calls performed by the storlet to external functionality provided by the storlet 

engine, e.g. calls to access objects in cloud storage. 

 

A storlet may originate from several sources: written by a system administrator; written by a user; or bought 

as part of a third-party package or downloaded from some site. Further, storlet execution can be initiated at 

different privilege levels: by an administrator; by a privileged user; or by a regular user. Based on the source 

of the storlet, the initiator, and the storlet functionality, a certain level of trust should be associated with the 

storlet. Thus, the storlet runs in a sandbox that controls its execution and ensures that storlets can only 

perform actions that do not interfere with the performance and scalability of the storage system. 

 

We provide two sandbox types to associate different levels of trust with different storlets: 

• Admin Sandbox – the storlet can perform all operations. 

• User Sandbox – the storlet is restricted and cannot perform administrative operations like writes on 

the file systems. 

While in general system storlets will probably be assigned with admin sandboxes and application storlets 

assigned with user sandboxes, this is not always the case. System storlets can be assigned with user 

sandboxes and likewise privileged applications storlets can be assigned with admin sandboxes. 
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We started with storlets in the Java environment, since Java provides built-in support for restricted modules 

- servlets. While Java performance is sometimes considered as an issue, many optimizations have improved 

the performance of the JVM over time and it’s becoming close to native code performance. The rest of this 

discussion will assume Java based storlets. Thus, a storlet is a servlet and the storlet developer may use the 

extensive existing development tools for servlets. The cloud platform initially targeted is OpenStack Swift. 

 

4.3 Storlet Engine Operation 

The Storlet Engine provides the cloud storage or object storage with capabilities to use storlets that run in 

a sandbox close to the data. It provides a powerful extension mechanism that makes the storage flexible, 

customizable and extensible. The engine is agnostic to the PDS Cloud data model and any preservation 

functionality. Thus, it can work with any application and any object that requires the storlets mechanism. 

Within the Storlet Engine the data model is the one used by the cloud storage and comprised of tenants, 

containers and objects. 

 

The Storlet Engine supports two modes of operations: 

• Synchronous mode – the storlet runs within the HTTP request/response that initiated its execution, 

or in other words the HTTP request ends after the storlet ends its execution. It can be synchronous 

on put if the request was an HTTP PUT request, synchronous on get if the request was an HTTP 

GET request, etc. We also call this streaming mode. 

• Asynchronous mode – the HTTP request that initiated the storlet execution ends as soon as the 

system registered the request. The storlet runs in the background and may accumulate results in an 

output object that also includes information about its completion status. The storlet initiator may 

later on access the output object and retrieve the results of the computation. We also call this batch 

mode. 

 

The following figure depicts how storlets can be used for example from the OpenStack dashboard. 

 

 

Figure 8: Trigger Storlet in OpenStack Dashboard 
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Taken together, The Storlet Engine provides a mechanism to leverage the computational power available at 

the storage server nodes level to process data. It is especially beneficial for processing large data sets, which 

alternatively would have to be transferred over the network to an application server. Typically, storlets 

should be limited to relatively simple, yet data intensive operations. 
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5 Initial Design Directions for ForgetIT Work Package 7 

5.1 Addressing the Goals 

Based on the review of the foundations of computational storage presented above, we wish to build a 

preservation aware LTDP storage system that will meet the ForgetIT requirements and goals, and 

demonstrate its functionality on the ForgetIT use cases. Hence, we plan to design a consolidated object and 

compute architecture for storage objects and computational processes (Storlet Engine) that may be defined, 

triggered and executed close to the data, in a cloud environment. 

5.2 Our Starting point is PDS and OpenStack Swift 

We wish to leverage existing technology as much as possible. The selected base LTDP system we chose is 

PDS Cloud, and the selected cloud platform is the existing OpenStack/Swift. These will require extensions 

and refinements to specifically support the ForgetIT framework and goals. We will define the structure of the 

AIPs for ForgetIT data, and implement the creation of the AIPs from the raw data and metadata. The major 

extension will be enhancements to the existing PDS Cloud storlet mechanism. Storlets will be packaged as 

AIPs, and will be invoked via a REST HTTP request using a well defined format. 

 

5.2.1 The planned Storlet extensions 

Storlets may be extended as follows: 

a) Executed in a sand-box and include specialized security model. 

The guarantee of enhanced security storlets will promote the adoption of preservation related storlets by 

potential security sensitive users, in support of the ForgetIT goals. 

b) Added/removed dynamically 

The possibility to easily add/remove storlets will promote the adoption of preservation related storlets, and 

will enable evolving managed forgetting and contextualized remembering. 

c) Input/output to storlets may be multiple objects (also objects may be versioned) 

This feature may be leveraged by dynamic evolution-aware contextualization, which require simultaneous 

processing of many objects. 

d) Support for streaming operations, batch operations, and periodic operations 

This feature is useful for managed forgetting and synergetic preservation. 

e) Some metadata support for storlets 

Storlets metadata is important for allowing storlets to perform general purpose data processing activities. 

f) Optimize storlet placement so it will run best and be closest to its data 

This feature will optimize storlet performance and will promote its usage by potential users. 

g) Parallel and distributed execution of storlets 

This feature will optimize data intensive processing tasks in which the task may be broken into parallel 

independent sub tasks. 

 

Examples of Potential Storlets for ForgetIT: 

a) Summarization and aggregation processes to enable managed forgetting. 

The storlet may scan objects to perform summarization per policy criteria. 

b) Redundancy detection and deletion processes to enable managed forgetting. 

The storlet may scan objects to perform removal of redundancy or complete removal per policy criteria. 

c) Multimedia analysis algorithms (provided by CERTH in work package 4) 

The storlet may efficiently perform image analyses at the storage server level close to the data. 

d) Analytics processes 

The storlet may efficiently perform analytics processing at the storage server level close to the data. 

e) Indexing processes 

The storlet may efficiently perform indexing processing at the storage server level close to the data. This 

time consuming processing may be performed at the storage server level as a background process, without 

loading the application servers. 

f) Encryption/Secure Delete 
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The storlet may perform encryption of a copy of an object, and optionally delete the original clear-text 

version. 

g) Format transformations 

The storlet may perform format transformations to enhance object readability, save storage space, conform to 

a standard and/or improved logical preservation for future uses. 

 

Potential storlets developed jointly with CERTH partner: 

(1) Image feature extraction 

(2) Image concept detection 

 

Potential storlets developed jointly with Turk Telekom partner: 

 (1) Virus check - can be useful as a storlet if we wish to dynamically upload new checkers, possibly from 

new vendors and scan data that is already stored.  

(2) Video transcoding – transcode for mobile devices e.g. with VideoLAN 

(3) Document conversion – convert from Word to PDF or JPEG. This is useful for automatically converting 

proprietary formatted documents (e.g., Word format) to non-proprietary formats (e.g., JPEG) for viewing 

with general purpose applications. 

5.3 Additional Possible Directions 

One possible additional direction is to allow for some form of (limited) searchable metadata. A search is 

desired for our ForgetIT variant to support listing of objects on which to perform preservation actions. 

       

Another possible direction is to implement support for SIRF (Self-contained Information Retention Format), 

to support SIRF containers in the cloud. SIRF provides a catalog with metadata related to the entire contents 

of the container as well as to the individual objects and their interrelationship. 

5.4 Planned Integration with the "Preserve-or-Forget" Framework 

The planned integration will be via HTTP RESTful requests. This forms a loose form of integration, which 

guarantees simplicity and future portability. It will also allow for easy testing and smooth integration. The 

details of the integration will be defined in D8.1. 

5.5 Other Possible Directions 

As time permits, we may explore additional extension directions. Examples include: exchange with external 

cloud (e.g., DSpace), addressing joint information management and preservation lifecycle via development 

of a reference model, smooth bi-directional preservation/information management storage transitions, 

indexing methods and analytics. 
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6 Summary and Conclusions 
We have presented a review of the foundations of computational storage, in the context of the ForgetIT 

project and goals, with a focus on the storage system and LTDP. The general goal is to increase the value 

and outcome of preserved information over time and provide additional incentive to the potential users for 

preservation by transforming the generic storage service to a richer service with potentially higher business 

and personal value. 

 

Based on the state of the art, we will build a consolidated platform for objects and computational processes 

(Storlet Engine) that is defined, triggered and executed close to the data. 

 

We will leverage existing storage technology (PDS Cloud) and cloud technology (OpenStack) and extend 

both as needed to achieve the planned ForgetIT goals and produce the expected ForgetIT results, 

demonstrated with some of ForgetIT use cases data and computations. 
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