

 www.forgetit-project.eu

ForgetIT
Concise Preservation by Combining Managed Forgetting

and Contextualization Remembering

Grant Agreement No. 600826

Deliverable D5.4

Work-package WP5: Joint Information and Preservation Management

Deliverable D5.4: Workflow model and prototype for transition between active
system and AIS – Final release

Deliverable Leader Jörgen Nilsson

Quality Assessor Mark Greenwood

Estimation of PM spent 12

Dissemination level PU

Delivery date in Annex I M36

Actual delivery date 2016-03-31

Revisions 9

Status Final

Keywords: Preservation, ingest, re-activation, contract, manager

ForgetIT Deliverable 5.4

Page 2 (of 55) www.forgetit-project.eu

Disclaimer
This document contains material, which is under copyright of individual or several ForgetIT
consortium parties, and no copying or distributing, in any form or by any means, is allowed without
the prior written agreement of the owner of the property rights.
The commercial use of any information contained in this document may require a license from the
proprietor of that information.
Neither the ForgetIT consortium as a whole, nor individual parties of the ForgetIT consortium
warrant that the information contained in this document is suitable for use, nor that the use of the
information is free from risk, and accepts no liability for loss or damage suffered by any person
using this information.
This document reflects only the authors’ view. The European Community is not liable for any use
that may be made of the information contained herein.

© 2016 Participants in the ForgetIT Project

Deliverable 5.4 ForgetIT

© ForgetIT Page 3 (of 55)

Revision History

Version Major changes Authors

0.1 Draft of structure JN

0.2 Overall insertion of material in all sections JN, IA

0.3 Material to section 4, 5 IA, GL

0.4 Material to section 1, 2, 3 JN, FG

0.5 Changed order of 3 & 4 JN, IA

0.6 Finalising structure JN, IA

0.65 General check of references, figures, etc. JN, IA

0.7 Version ready for QA JN, IA

1.0 Added appendix, executive summary, fixed QA
comments

JN, IA

List of Authors

Partner Acronym

LTU
EURIX

Authors

Ingemar Andersson, Jörgen Nilsson, Göran Lindqvist,
Francesco Gallo

ForgetIT Deliverable 5.4

Page 4 (of 55) www.forgetit-project.eu

Table of Contents

1	 Introduction .. 8	
1.1	 Structure of the Report .. 8	
1.2	 Target Audience .. 8	

2	 The Big Picture ... 9	
2.1	 Collector/Archiver software component ... 10	
2.2	 Context-aware Preservation Manager component .. 10	
2.3	 Active System adapter ... 10	
2.4	 Scenario .. 11	

2.4.1	 Scenario description .. 11	
3	 Context-aware Preservation Manager .. 13	

3.1	 Background ... 13	
3.2	 Support functions ... 15	
3.3	 Influence on DoW Success Indicators ... 16	

4	 Workflow Descriptions .. 17	
4.1	 Problem Statement .. 17	
4.2	 Preservation Preparation Workflow ... 17	

4.2.1	 Preservation Preparation workflow and the Context-aware Preservation Manager 18	
4.3	 Re-activation Workflow .. 19	

4.3.1	 Re-activation workflow and the Context-aware Preservation Manager 20	
4.4	 Setting Change Workflow .. 22	
4.5	 Influence on DoW Success/Progress Indicators ... 22	

5	 Implementation Details .. 24	
5.1	 Problem Statement .. 24	
5.2	 Common Details .. 24	
5.3	 Collector .. 24	
5.4	 Archiver ... 26	
5.5	 Access ... 27	
5.6	 Collector/Archiver/Access-RESTful services ... 28	

5.6.1	 Collector-RESTful-API ... 28	
5.6.2	 Archiver-RESTful-API .. 30	
5.6.3	 Access-RESTful-API ... 30	

5.7	 Context-aware Preservation Manager ... 30	
5.7.1	 CaPM - Preservation Broker Contract (CaPM-PBC) ... 33	
5.7.2	 CaPM - Activity Logger (CaPM-AL) ... 40	
5.7.3	 CaPM – Preservation Planning Support (CaPM-PPS) .. 41	

6	 Summary ... 45	
6.1	 Lessons Learned ... 45	
6.2	 Vision for the Future .. 45	

References .. 46	
Appendix A – Preservation Broker Contract XML Schema ... 48	

Deliverable 5.4 ForgetIT

© ForgetIT Page 5 (of 55)

Table of figures
Figure 1: The Collector/Archiver, the Context-aware Preservation Manager, and the Active System

Adapters in the ForgetIT architecture .. 9	
Figure 2: Model for interaction between Active System (IS) and Digital Preservation System (DP)

[Afrasiabi Rad, Nilsson, Päivärinta, 2014] ... 10	
Figure 3: Preservation Preparation Workflow, reference model [Gallo et al., 2016, p. 25] 17	
Figure 4: Activity Diagram of Preservation Preparation workflow (highlights and numbering added

for this discussion) [Gallo et al., 2015b, p. 27] .. 18	
Figure 5: Re-activation Workflow, reference model [Gallo et al., 2015a, p. 24] 20	
Figure 6: Re-activation Workflow and the role of the Context-aware Preservation Manager 21	
Figure 7: Setting Change Workflow, reference model [Gallo et al. 2016, p. 31] 22	
Figure 8: Class diagram for Collector component ... 26	
Figure 9: Class diagram for Archiver component .. 27	
Figure 10: Class diagram for the Access component .. 28	
Figure 11: Class diagram for Context-aware Preservation Manager component 32	
Figure 12: CaPM - Preservation Broker Contract (PBC) ... 33	
Figure 13: CaPM - PBC - identification section ... 33	
Figure 14: CaPM - PBC - collectionType section .. 35	
Figure 15: CaPM - PBC - services section .. 37	
Figure 16: CaPM - PBC - actions section .. 38	
Figure 17: CaPM - PBC - rules section .. 40	
Figure 18: Web interface of the CaPM-Preservation Planning Support (CaPM-PPS), that shows

summarized values on number of objects that has been managed by the PoF middleware
grouped on file format version per year. It is possible to filter on active system and file format
classification. ... 42	

Figure 19: Class diagram Context-aware Preservation Manager component – Preservation
Planning Support – Web-GUI .. 43	

ForgetIT Deliverable 5.4

Page 6 (of 55) www.forgetit-project.eu

Acronyms

AIP Archival Information Package

AIS Archival Information System

API Application Programming Interface

AS Active System

CMIS Content Management Interoperability Services

CaPM Context-aware Preservation Manager

DIP Dissemination Information Package

DO Digital Object

DoW Description of Work

DP Digital Preservation

DPS Digital Preservation System

DROID Digital Record Object Identification

ESB Enterprise Service Bus

IS Information System

METS Metadata Encoding and Transmission Standard

MODS Metadata Object Description Standard

OAIS Open Archival Information System

OAI-PMH Open Archives Initiative – Protocol for Metadata Harvesting

PASS Preservation-Aware Storage System

PIMO Personal Information MOdel

PoF Preserve-or-Forget

REST Representational State Transfer

SD Semantic Desktop

SIP Submission Information Package

SP Storage Provider

WP Work Package

Deliverable 5.4 ForgetIT

© ForgetIT Page 7 (of 55)

Executive summary

Increasing amounts of digital content are held by organisations and private citizens with limited
know-how and awareness of digital preservation. At the same time digital assets are becoming
more important in a long-term perspective (e.g. legal documents and obligations, business data, or
intellectual property). Limited resources for preservation drives the need for approaches that
strives for (semi-)automated preservation solutions.

An important aspect in supporting a smooth (automated) transition of digital content from source
information systems to preservation systems, is hiding the complexity of the processes; providing
support for decision making about alternative preservation actions, automated metadata
management, quality assurance issues, handling of copies, and automated error handling.

This deliverable summarizes the final versions of the components for enabling a smooth transition
between the active system and the preservation system in the ForgetIT project. The core
components considered in this deliverable are the Collector/Archiver and the context-aware
Preservation Manager (CaPM). The Collector/Archiver is directly involved in the transfer and
exchange activities, whereas the CaPM foremost provide a Preservation Broker Contract for rule-
based execution of actions.

Work described in this deliverable builds upon the approach and workflows defined in D5.1, D5.2
and D5.3, as well as on the conceptual processes defined in D8.5 for the PoF Reference Model.
Although the components are in a final state in the project, there are already discussions for how to
continue development of those, especially in a national (Swedish) context which also could include
adopting to work produced in the E-ARK, a project co-founded by the EC (under PSP CIT).

ForgetIT Deliverable 5.4

Page 8 (of 55) www.forgetit-project.eu

1 Introduction
The ForgetIT project aims at helping people and organisations with decisions on what to preserve
and where it should be kept, through ideas from psychology (on human memory) and with
assistance of automated processes. In order to make this as transparent as possible to the users,
there is a need for a smooth transition of objects between the Active Systems (the information
systems that are in use by the users) and the preservation systems (the system[s] where material
that should be preserved are kept). This work package (WP) describes these workflows and
implements some of the functionality needed for the automated processes.

In previous WP5 deliverables, we identified a gap between content management systems and
preservation systems especially regarding support for ingest of objects (D5.1) [Päivärinta et al.,
2013], and we also modelled the first iteration of two workflows, one for pre-ingest and ingest, and
one for re-contextualization and access (D5.2) [Nilsson et al., 2014]. D5.2 also included
discussion, documentation and reasoning on the first prototype versions of the software
components and the message oriented middleware approach. In D5.3 [Nilsson et al., 2015] we
further elaborated on the workflows, which also included name changes influenced by the work
with the reference model (D8.2) [Gallo et al., 2015a] and D8.5 [Gallo et al., 2016]. D5.3 also
introduced the Context-aware Preservation Manager, although the major part of that will be seen in
this report.

Tapping into these workflows is the Context-aware Preservation Manager (software) that: acts
upon agreements between the users and the service providers; logs every object passing in and
out of the systems; logging of process actions (activities), and any errors that might occur in the
process of transferring content in and out of the systems; supports the creation and upholds
submission agreements based on preservation policies, and is able to suggest actions to be taken
e.g. in re-activation of material. The Context-aware Preservation Manager is also able to assist in a
preservation planning scenario by providing a user interface that displays graphs with statistics
based on number of objects passing through the Preserve-or-Forget (PoF) middleware per time
period. This statistical data is grouped by systems involved and mime type classifications, and
displays the number of objects for each mime type version. The statistical computation of object
data could also be exported in a standardized format by a web service interface.

It should be noted that this report is just part of deliverable D5.4. The rest of the deliverable are the
implemented components described in this report, which have been integrated into the PoF
Framework.

1.1 Structure of the Report
After the Introduction, a "Big Picture" section describing circumstances related to High-level
Workflows and Integration Considerations follows. The report then continues with Section 3 which
describes reasoning and motivation around the Context-aware Preservation Manager, which has
been the focus of year 3 of the project. Section 4 includes current workflow descriptions for
Preservation preparation and Re-activation and documents what has changed since the previous
release. In Section 5 the implementation details for all WP5 components, and middleware related
to WP5, are described, followed by Summary and Conclusion in Section 6. Appendix A contains
the schema specification for the Preservation Broker Contract.

1.2 Target Audience
The Introduction section, Big Picture section, and the Summary should be of interest to most
readers as it provides a brief overview of the structure of the framework built in the project and
where the components described in this report fit in. The Workflow section and Implementation
section are intended for those with interest in more of the details surrounding the work.

Deliverable 5.4 ForgetIT

© ForgetIT Page 9 (of 55)

2 The Big Picture
To describe where the work reported in this deliverable fit in to the rest of the project, an overview
of the role of the components and the workflows is provided here.

This workpackage is responsible for two components in the Preserve-or-Forget (PoF) middleware,
as well as the PoF Adapters in the Active Systems. The overall architecture can be seen in Figure
1 with the relevant components highlighted.

Figure 1: The Collector/Archiver, the Context-aware Preservation Manager, and the Active

System Adapters in the ForgetIT architecture
While Figure 2 depict an overall interaction between an Active System and a Digital Preservation
System, including the need for exchange of administrative information, earlier deliverables, in
particular the Preserve-or-Forget Framework deliverables D8.3 [Gallo et al., 2014] and D8.4
[Gallo et al., 2015b], describe the communication between the Active System adapters and the
middleware and its components. The communication adopts a REST1 approach and the exchange
of Digital Objects (DO) is handled using CMIS2. The communication between the Digital
Preservation System (DPS) and the middleware also adopts REST, but not CMIS since that
currently is not a common option in DPS solutions. One design issue worth noting is that the
ForgetIT project works under the assumption that a customer (Active System owner) might use
several digital preservation service providers, perhaps at the same time, but most certainly over
time, and that the systems involved will change.

1 Representational State Transfer
2 Content Management Interoperability Services – http://docs.oasis-open.org/cmis/CMIS/v1.1/os/CMIS-v1.1-
os.html

ForgetIT Deliverable 5.4

Page 10 (of 55) www.forgetit-project.eu

Figure 2: Model for interaction between Active System (IS) and Digital Preservation System

(DP) [Afrasiabi Rad, Nilsson, Päivärinta, 2014]

2.1 Collector/Archiver software component
The Collector/Archiver can be seen as the component that handles the basic flow of digital objects
between the active systems and the preservation system(s). In general it can be seen as two parts,
where in a typical preservation preparation scenario, the Collector is responsible for
fetching/gathering objects, that should be preserved, from the Active System and the Archiver is
responsible for packaging them in a suitable way, thereafter transferring them to the DPS. In a re-
activation scenario, the role of the Collector would be similar, although it would then work with the
DPS and would be responsible for extraction of the Dissemination Information Package (DIP),
adjusting/adapting the package according to the Preservation Broker Contract, and making the
objects available to the Active System.

2.2 Context-aware Preservation Manager component
The Context-aware Preservation Manager (CaPM) is responsible for management of administra-
tive information from the PoF middleware process. This information is used in the preservation and
re-activation process to enhance the usability of digital objects when brought back from a DPS to
active use in an Information System (IS). This component monitors use and change of physical
and logical structures in IS, logging changes in practices; capture the use of file formats and
technologies. The CaPM will use this data in the computation of change recommendations based
on content value and use statistics and to propagate this information to the DPS that is responsible
for keeping preserved objects usable. This component is also responsible for the establishment of
a submission agreement, here called Preservation Broker Contract (PBC), to hold information that
defines the terms and conditions of routes for different content acting as a semantic matchmaker
between identified needs and provided digital preservation (DP) services.

2.3 Active System adapter
The active system adapter act as a bridgehead between the system that has need of preservation
services and the PoF Middleware. The idea is that the middleware provide a number of standard-

Deliverable 5.4 ForgetIT

© ForgetIT Page 11 (of 55)

based interfaces for the exchange of objects and that the adapter implements that interface on the
Active System side. As already mentioned, the ForgetIT project employs the CMIS standard for
exchange of objects, and the Active System adapters in the two different systems implement this in
two slightly different ways. The adapters are described in detail in D8.4 [Gallo et al., 2015b] but in
short the TYPO3 case uses a full-fledged Alfresco3 server acting as a CMIS repository, and the
Sematic Desktop (SD) case employs an Apache Chemistry4 implementation. Both these
implementations are then (loosely) integrated with the respective systems.

2.4 Scenario
Here we introduce a scenario that is used to describe the role and functionality of certain
components and functions. The purpose is to provide an informal view on the preservation process
and what is involved, especially from the user perspective. In this description we assume that the
"user" can be either a private person, or a person working professionally within an organisation,
and we try not to make any big difference between them, although in reality user interfaces, for
example, certainly could have different vocabularies and look different depending on the target
group.

2.4.1 Scenario description
Establishing a contractual relationship
Initially, an agreement between the Active System user/owner and the PoF Middleware manager
has to be made regarding what should be monitored for preservation. There are several things that
should go into a contract and although some of them are generated as defaults, a couple of things
have to be provided as input to what we refer to as a Preservation Broker Contract (PBC).

If a contact has not been established earlier, an adapter needs to be put in place in order to
facilitate exchange of objects between the active system and the middleware. This adapter can be
as "simple" as a CMIS server implementation that is just providing access to a certain folder on a
local file system, or something more advanced with integration into the actual information
system(s) producing information that should be preserved. This adapter will be referred to as an
"endpoint" for the active system, and information about this needs to be put into the PBC.

The PBC also requires a name, a contact person on the active system side, and contact
information. After this fairly straightforward information, the user is presented with a guided
questionnaire (a "wizard") to get input on what needs the user has regarding the preservation of
the objects.

Preservation Preparation
The use of contracts makes it possible to adjust the execution of preservation activities according
to the evaluation of a digital collection. The preservation preparation process includes several
steps that could be managed by rules stated in a contract. Rules that reflect different preservation
policies dependent on content classification and purpose of use, policies that will change over
time.

One important part of a the long-term management of digital documents for future understanding is
to enrich the objects by adding technical, provenance, and contextual metadata. The PoF
middleware demonstrate the use of services for both automated technical metadata extraction and
external contextualization mechanisms that enable the linking of objects to external digitized
knowledge bases and by extracting and adding information from external sources as contextual
metadata D6.4 [Greenwood et al., 2016]. This is an example of a process that could be managed
by a contract containing a "rule" stating when this service should execute and what kind of external
source to use. Another example of a task in a preservation preparation workflow is the image
duplication identification and quality analysis mechanisms [Mezaris et al., 2016] where rules stated
in a contract could be reflected in the handling of objects. Other examples of the need for flexibility
in the preservation process can be derived to the need for a trusted and secured management

3 Alfresco CMIS – http://www.alfresco.com/cmis
4 Apache Chemistry – OpenCMIS http://chemistry.apache.org/java/opencmis.html

ForgetIT Deliverable 5.4

Page 12 (of 55) www.forgetit-project.eu

process stating the need for execution of fixity or encryption mechanisms in the preservation
preparation workflows.

These are examples of preservation activities which are part of a preservation preparation
workflow that could be adjusted based on content classification or purpose of use. The possibility
of adjusting preservation process activities should also be seen in light of the fact that every action
and amount of data that must be handled is associated with a cost in a cloud-based service
oriented preservation solution.

Preservation Action
Preservation actions are actions that are required for continuous access to a digital object.
Planning of these actions is part of Preservation Planning, and often results in recommended
migration pathways that incorporates identification of appropriate file formats and migration tools,
but also includes aspects of security, access, storage, and that handling practices are according to
policies. Decision on migration pathways should be taken with a good basis, thus having a position
residing in the middle of many Active Systems and many Digital Preservation Systems gives an
excellent opportunity to capture the use of file formats and type of systems in bi-directional
interactions. To elaborate a bit further on this process; a technology watch mechanism, residing in
every OAIS compliant DPS, obtains statistical data from the middleware that indicates that the use
of a specific file format has been drastically reduced. Information that automatically could be
incorporated into the administration entity in the DPS as part of an annual reporting mechanism or
being triggered as an alert based on a threshold quota stated in a contract (PBC). Before taking
any actions archivists, notified by the file format alert, decides to examine this further supported by
the use of a graphical decision support interface that enable scrutinizing based on different
statistical computations and filtering of data linked to a format registry. If a decision results in a
planned migration action the contract (PBC) could define if the migration action should be
executed for a specific object, and after execution how to handle the result (original and its copies)
depending on different quality thresholds.
Contract changes/updates
Part of maintaining objects over time, also involves changes in both the system environment and
the organisational/personal setting. This could include for example the desire to switch service
provider, or circumstances that involve handing over the holdings to another individual. This means
that also the contract should be able to evolve, or be replaced by a new one.

Deliverable 5.4 ForgetIT

© ForgetIT Page 13 (of 55)

3 Context-aware Preservation Manager
The main objective of the PoF middleware is to achieve a seamless transition of digital objects in
and out of ECM-based information systems (Active Systems) to OAIS-compliant preservation
systems (DPS) in a many to many relationship. The Context-aware Preservation Manager (CaPM)
is a component that resides inside the Preserve or Forget (PoF) middleware with the purpose of
providing support to action-based components and services located in the PoF middleware by
providing structure and rules to the preservation preparation and re-activation processes based on
an agreement between the information Producer (Active System) and the Archive (DPS). Besides
supporting activities inside the PoF middleware, the CaPM also facilitates the interactions that take
place between the PoF middleware and an active system on one side and a DPS on the other. The
CaPM component has been developed based on the workflow “scenarios” represented by the
Preservation Preparation workflow (Figure 3), the Re-activation workflow (Figure 5), and the
Setting Change Workflow (Figure 7). Based on these workflow scenarios the functional features of
the CaPM has gradually evolved to a number of functional components divided into three main
parts; the Preservation Broker Contract (PBC) – supporting the establishment of an contractual
agreement between an active information system and a DPS. Agreements with the purpose of
providing structure and rule to the relationship between information Producer and an Archive.
Another component part of the CaPM is the Preservation Planning Support (PPS) that exposes the
bi-directional communication between active systems and DPSs by making use of the logging
mechanisms of the Collector/Archiver component. The third CaPM component is the Activity
Logging (AL) mechanism that provides the ability to support a trustworthy management of activities
executed in the PoF middleware by keeping track of every “action/event” that is executed. This
section continues with the description of the background and motivation followed by general
functional descriptions of the three sections of the CaPM; the Preservation Broker Contract (PBC),
the Preserve or Forget Activity Logging (AL), and the Preservation Planning Support (PPS).

3.1 Background
The foundation for the design characteristics of the Context-aware Preservation Manager (CaPM)
component is based on a thorough literature review. This identified the need for support for
content-based information systems to manage an increasing amount of digital information that
needs to be preserved [Päivärinta et al., 2014]. Päivärinta also identified a gap between content-
based information management systems and OAIS-compliant [CCSDS, 2012] Digital Preservation
Systems (DPS) that implied the need for a more aligned view on the management, producer and
information consumer roles in order to interact smoothly. The paper of Päivärinta et al. [2014]
identified challenges and issues in administering the integration of content-based IS and DPS to
support seamless content workflow scenarios. One of these design issues was to emphasize the
adaptation of preservation needs to adequate cloud based DP (Digital Preservation) services.
Afrasiabi Rad, Nilsson & Päivärinta [2014] suggested a middleware [Linthicum, 2000] to be
developed and placed between DP services and IS to support pre-ingest, post-access, and
preservation administration.

Pre-ingest is defined as preservation preparation tasks before ingest to a DPS, post-access as
tasks related to request of objects from a DPS and preparation of these objects for re-activation in
an IS, and preservation administration as supportive tasks for managing the pre-ingest and post-
access workflows between IS and DPS. Pre-ingest could further be elaborated as the process
where digital objects are evaluated and prepared for compliance with repository standards,
according to content and metadata requirements. A common pre-ingest approach is to provide a
separate tool/service for the preparation of submissions; one example of such a solution has been
developed as part of the HathiTrust initiative [York, 2010] that provides support for determining the
standards and specifications and prepares content for ingest by modifying or transforming it to
meet these specifications. A literature review by Afrasiabi Rad et al. [2014] shows that there are
initiatives that have developed partial solutions that support the integration of IS and DPS, one
example is part of the Safety Deposit Box (SDB), which at the time of writing this report has
evolved into Preservica Enterprise Edition [Preservica, 2014], that has demonstrated its usefulness
in delivery of content to the archive, but Afrasiabi Rad et al. [2014] also reveals that DP solutions

ForgetIT Deliverable 5.4

Page 14 (of 55) www.forgetit-project.eu

that emphasize automation, close integration between IS and DPS in a many-to-many “brokered”
relationship is in its infancy.

The tasks identified as needed to support the preservation administration [Afrasiabi Rad et al.,
2014] should be interpreted as a translation of organizational preservation policies to DP
requirements, and the mapping of these to the execution of adequate DP services. In the PoF
middleware solution such DP services are there to support a seamless transition of objects from
active systems (IS), automated creation of metadata, management of process execution and to
handle exceptions and errors, ending with the creation and transfer of SIPs adapted to receiving
DPS. Afrasiabi Rad et al., [2014] also identified the need for support for post-access activities that
includes re-activation of preserved information resources back to active information systems that
possibly is not the system that initially preserved them. This was the basis that influenced the start
of identifying the characteristics of the Context-aware Preservation Manager (CaPM).

In the next step, and start of concretizing features of the CaPM, we have studied the result from
the SHAMAN project [Wilkes et al. 2009] that identified the need for a closer integration of
archiving system functionality to information system workflows (Product Life Cycle Management).
Wilkes et al. [2009] identified some fundamental preservation tasks that needs to be supported
based on use-cases as automated collection of metadata, tracking of relationships between
objects, support of automated transformations of objects into vendor-neutral formats, the need for
vendor independent access to preservation functionality, the interdependency between
preservation system and specific information system, flexible support of metadata standards,
monitoring of user actions during the preservation process being added as provenance history to
objects, validation (completeness/correctness) of the preservation process and object before
ingestion to the archive, and migration support at different stages; at pre-ingest, ingest, access, or
based on a scheduled preservation plan.

One methodological framework that has an important impact on the design of CaPM is the
Producer-Archive Interface Method Abstract Standard (PAIMAS) [CCSDS, 2004] which could be
used as a “checklist” that provides structure to the interaction between an information producer
(active system) and an archive (DPS). PAIMAS focuses on submission agreements that need to
be established at pre-ingest. A submission agreement is a contract that need to be established
between an active system (IS) and a DPS that specifies a data model which identifies format/data
objects including any logical constructs produced by the active system and how they are
represented in each transmission session [CCSDS, 2004]. Any agreement defined by PAIMAS
comprises the digital objects as sizes, structures, formats, quantity, communication procedures,
packaging, metadata, delivery schedules, detection of errors, and quality aspects. PAIMAS is
useful as a checklist of what should be considered before any submissions to the archive have
occurred but it is an “abstract standard” and is in need of concrete implementations that show how
to concretize and execute an agreement.

There is also a technical recommendation that can be seen as a concretization of PAIMAS and
that is the Producer-Archive Interface Specification (PAIS) [CCSDS, 2014] providing an XML-
based description of data to be sent to an archive. PAIS includes a syntax for defining the digital
objects along with their inter-relationship which could be aggregated into SIPs and how to
instantiate this as a data package via the use of an XML Formatted Data Unit (XFDU)5. PAIS is
useful for concretizing an agreement concerning digital object specifications and their internal
relations as a basis for creating SIPs. It also provides a contribution towards agreements
concerning the transfer of SIPs between active system and DPS.

However, we argue that even PAIS does not sufficiently cover the close relationship between
several active systems (AS) and several DPS supported by a middleware broker solution with the
aim of achieving a high level of automation. In order to achieve this we have suggested the
implementation of a Preservation Broker Contract (PBC) that, in addition to providing details of the
digital objects and its relationships, supports a tighter interaction pattern in a many-to-many
relationship by executable service endpoint specifications, address the need for support in the
appraisal of preservation candidate objects, and provide rule-based execution paths that reflects

5 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.3122&rep=rep1&type=pdf

Deliverable 5.4 ForgetIT

© ForgetIT Page 15 (of 55)

organisational preservation policies. We also argue that an agreement between an active system
and DPS should embrace the concept of service-orientation [Papazoglou, 2003] by stretching out
the impact and use of DP services that goes beyond the "pre-ingest" and "ingest" procedures of a
DPS; a PBC facilitate features that could translate a high-level DP strategy to be reflected in the
selection and configuration of object management and storage services. In addition, we have
identified that an agreement (PBC) could be useful in a re-activation process (post-access); re-
contextualize copies of the preserved information resources back to active information systems by
the support of restructuring of objects, definition of migration pathways, and access rights rule
definitions. Besides the support of executable DP policies (rules) and to provide structural
instructions by the use of a contract (PBC), the CaPM has been designed with features that
support monitoring of activities and a compilation of logged objects that pass through the PoF
middleware. This provides the ability to monitor middleware processes, execute alternative routes
depending on the outcome and to ensure that activities are executed as agreed in the PBC. This
feature also allows the statistical compilation of file formats that could be used as decision support
in a preservation action planning process, deciding upon suitable migration pathways.

3.2 Support functions
The Context-aware Preservation Manager (CaPM) acts upon agreements between the information
producers, consumers, and the preservation service providers by logging the digital content
passing through the PoF Middleware, PoF component actions (activities), and any errors that
might occur in the process of transferring content between these systems. CaPM supports the
creation and uphold of submission agreements based on preservation policies, and is able to
suggest actions to be taken e.g. in re-activation of content. The CaPM also have the ability to
assist in preservation-planning scenarios by providing a user interface that displays graphs with
statistics based on the number of objects passing through the PoF middleware per time period.
The CaPM has three major subparts that support it's overall role: Preservation Broker Contract;
Preserve or Forget Activity Monitoring; and Preservation Planning Support. These will be
described in separate sections following below.
Preservation Broker Contract
The Preservation Broker Contract (PBC) provides structure and rules for the interactions, in either
direction, between an Active System and a Digital Preservation System. In order to support the
seamlessness of transitions, the PBC should contain rule-based execution paths reflecting
organisational preservation policies, executable service endpoint specifications, object
management configurations such as migration pathways, access rights definitions, storage
options, and information needed for restructuring of objects in order to adapt to changes in the
environment. Besides the machine-readable instructions, the PBC should also function as a formal
agreement between the involved participants.

Preserve or Forget Activity Logging
Activity Logging supports the logging of all activities involved in the processing of objects within the
PoF middleware, such as which events take place and the systems involved. This provides the
ability to monitor middleware processes, execute alternative routes depending on the outcome and
to document that activities are executed as agreed in the PBC. The logs also serve as input to
Preservation Planning Support.
Preservation Planning Support
The Preservation Planning Support assists in the decision making processes around preservation
planning. Based on input from activity logging and with information about e.g. file formats from the
Collector, statistical data can be grouped by mime type classifications and filtered in different ways
if desired, e.g. by systems, system types, or contracts. This information should be presented in a
way that is suitable for human decision-making, e.g. some graph(s). The statistical computation of
object data can also be accessed in a standardized format by a web service interface, possibly to
be used for automated execution of preservation actions.

ForgetIT Deliverable 5.4

Page 16 (of 55) www.forgetit-project.eu

3.3 Influence on DoW Success Indicators
In the projects Description of Work, there is a success indicator for "types of major change that can
be communicated to the preservation system" where the Context-aware Preservation Manager
helps in keeping track of e.g. types and formats of material passing through the middleware as well
as the physical and logical structure of this information. Not all of this information is relevant for the
Preservation System, at least not until dissemination request is made at which time the CaPM can
assist with information about the current situation and in what way the material should be brought
back, including e.g. rules for transformation. The same type of information is also needed when
there is a (major) change in any system involved, for example if the Active System has migrated to
a new version, or perhaps even a different system.

The Preservation Broker Contract can hold rules for different activities and actions in the pro-
cessing chain, which can assist the automation of these actions, thereby influencing the indicator
"Seamless transition between active and archival system", as well as "Degree of automation of SIP
generation" and "…automation of the transfer between archival system into active system". The
establishment of a contract in itself is however hard to fully automate.

With the platform independent PBC, the PoF middleware is able to provide great flexibility in exe-
cution paths with a minimum of fixed workflow paths. Since the PBC also contains information
about the systems that should be involved and loosely coupled service endpoints, the support for
brokered many-to-many relationships between Active Systems and DPS has been strengthened.
By formalising this in a platform independent contract, the dependency on a specific middleware
solution has also decreased which, from a long-term perspective, is good since over time
essentially all systems will be replaced.

In all of these processes, the logging of activities and events provide a documentation of what the
objects have gone through, thereby contributing to the provenance of the objects, and a trusted
management of the objects.

Deliverable 5.4 ForgetIT

© ForgetIT Page 17 (of 55)

4 Workflow Descriptions
This section contains descriptions of the two main workflows related to the seamless transition of
data between active systems and preservation systems. These workflows are for Preservation
Preparation, Re-activation, and Setting change.

4.1 Problem Statement
In this work package, one of the objectives, as stated in the Description of Work, is to achieve
"Seamless transition between active and archival system – based on forgetting methods". This
includes defining workflows that describe this transition with relevant steps and involvement of
components. Two major workflows are described in this section, namely the Preservation
Preparation workflow, and the Re-activation workflow.

4.2 Preservation Preparation Workflow
In deliverable D8.5, The Preserve-or-Forget Reference Model [Gallo et al., 2016], the ideas and
concepts behind the ForgetIT approach were gathered to define an implementable model. There
are different layers in the model, but in Figure 3 we see the Preservation Preparation Workflow in
the Remember & Forget Layer.

Figure 3: Preservation Preparation Workflow, reference model [Gallo et al., 2016, p. 25]

The workflow has five basic steps, select, provide, enrich, package, and transfer. Although these
steps are described in more detail in D8.5 [Gallo et al., 2016], a brief description is given here. The
select phase focuses on deciding what should be archived, and in this layer that is supported by
Managed Forgetting & Appraisal that in turn is assisted by a Content Value Assessment. These
two functionalities are thoroughly described in deliverable D3.3 Strategies and Concepts for
Managed Forgetting [Kanhabua et al., 2015]. The Forgettor is the main component in this stage.

The provide step is supported by the Exchange Support which essentially is the CMIS client and
the Collector, described in more detail later in this report. This step is also supported by De-
contextualization, which aims at getting enough context from the active system through
components developed in WP6.

In the next step, enrich, the selected object is enriched by the Contextualization functionality, which
is described in detail in deliverables from WP6, the latest being D6.4 Contextualisation Framework
and Evaluation [Greenwood et al., 2016], and by the Extractor and Condensator described in WP4
deliverables e.g D4.4 [Mezaris et al., 2016]. These components provide semantic information that
should improve both the discovery and reuse of the object. This information will be treated as
metadata, and therefore there is also need for a Metadata Management functionality, which today
is mainly used for the next step in this workflow.

The package step is responsible for creating a suitable Submission Information Package (SIP)
based on agreements between the active systems owner and the preservation system provider.
The package step is supported by Metadata Management and ID Management for holding

ForgetIT Deliverable 5.4

Page 18 (of 55) www.forgetit-project.eu

metadata that is needed for the creation of the package, and management of both local identifiers
as well as identifiers received from e.g. the preservation system. The package step as well as the
transfer step is largely covered by the Archiver which is described in Section 5.4.

4.2.1 Preservation Preparation workflow and the Context-aware Preservation
Manager

This section contains a description of the interaction between the major components of the
preservation preparation workflow. A generic workflow for the preservation preparation process
has been previously described [Nilsson et al., 2015], and we therefore focus on pinpointing the role
and influence of the Context-aware Preservation Manager in an implemented process workflow
(Figure 4) as described in D8.4 [Gallo et al., 2015b].

In Figure 4 we have highlighted and numbered some parts that will be described below with a
focus on how functionality of the Context-aware Preservation Manager can contribute to the
implementation and management of such a workflow, and provide support for activity logging at
each stage of the process. For details on the entire figure, we refer you to D8.4 [Gallo et al.,
2015b]

Figure 4: Activity Diagram of Preservation Preparation workflow (highlights and numbering

added for this discussion) [Gallo et al., 2015b, p. 27]

1. Process Request: At this stage, if a Preservation Broker Contract ID can be provided by the
Active System, the contract can already be connected to the request. This could initiate a
checking of e.g. preservation storage quotas to inform the user if they are close to their
limit.

1

2 3

4 5

6

7 8 9

10

11

Deliverable 5.4 ForgetIT

© ForgetIT Page 19 (of 55)

2. Process CMIS Metadata: When processing the CMIS metadata fetched from the Active
System, it is possible to extract information about which account the object/collection
belongs to and thereby make connections to a contract, if not already provided in step 1.
The contract could also include information about which metadata to process.

3. Check Preservation Value: the selection of what to preserve can be based on thresholds
stated in the Preservation Broker Contract, instead of having fixed values in the Forgettor
component. At this stage it is also possible to filter out objects for other reasons, also stated
in the contract. As an example, the contract might state what file formats are accepted.

4. Prepare Package Folders: The Collector prepares package folders using unique identifiers.
The hierarchical structuring of a folder can be described in the contract, but is currently
arranged with a folder for content, and one folder for metadata (labelled "content" and
"metadata" respectively).

5. Fetch CMIS Object: The Collector then fetches the objects from the Active System using
connection information from the contract, and places them in the content folder. It also
extracts metadata and stores it in an internal database for later processing.

6. Enrich step: When the objects have been fetched and stored in the processing area, the
enrich step takes over and starts processing the objects in order to add more information
and context to the objects. This includes image analysis, clustering, and contextualization
handled by the Extractor and the Contextualizer respectively. The Preservation Broker
Contract can here be utilised for specifying e.g. which image analysis method that should
be used, and a threshold for image clustering, as well as particular external sources for
context information.

7. Prepare Package: After the fetched objects have been processed by components in order
to enrich the objects (e.g. the Contextualizer), the Archiver prepares the Submission
Information Package by arranging the hierarchical structure of the package folders
according to what is expected by the Digital Preservation System. This information should
also be stated in the Preservation Broker Contract.

8. Archival Package: Based on what is agreed in the contract, the Archiver prepares the
metadata for the archival package (e.g. as a combination of METS, MODS and PREMIS)
and creates a submission information package.

9. Submit Package: The Preservation Broker Contract holds information on the service end-
point for the Digital Preservation System (DPS), and the Archiver use this information to
submit the package to the DPS.

10. Store in Cloud Storage: The Preservation Broker Contract contains information on different
preservation levels and actions that are relevant for the DPS. This could include type of
storage and restrictions on where (geographically) the objects are allowed to be stored.

11. Run Storlets: If needed, the Context-aware Preservation Manager can provide information
from the contract to Storlets (running in the Preservation-aware Storage Service) that are
about to do some processing of the objects in the DPS. This could include transformation
rules and restrictions, and e.g. the handling of duplicates/redundancy.

4.3 Re-activation Workflow
As mentioned earlier, deliverable D8.5 [Gallo et al., 2016] describes the ForgetIT approach and an
implementable model of this approach. In Figure 5 we see the Re-activation Workflow in the
Remember & Forget Layer. This section focus mainly on the role of the Context-aware
Preservation Manager in relation to the Re-activation Workflow, and more details on the full
workflow can be found in D8.5 [Gallo et al. 2016].

ForgetIT Deliverable 5.4

Page 20 (of 55) www.forgetit-project.eu

Figure 5: Re-activation Workflow, reference model [Gallo et al., 2015a, p. 24]

The workflow has five basic steps: request; search; fetch; prepare; and deliver. Although these
steps are described in more detail in D8.5 [Gallo et al., 2016], a brief description is provided here.

The request step simply initiates the process stating that something needs to be retrieved from the
preservation system. The next step, search, is the process of locating the object(s) in the
preservation system, utilising functionality from ID Management, Search & Navigation, and
Metadata Management. The fetch step is handled by exchange support, tailored to the DPS in
question.

The next step is to prepare the fetched object(s) so that the re-activation in the Active System is as
smooth as possible. This includes support from the Re-contextualization functionality (WP6) to
potentially add semantic information, and the Collector/Archiver in order to prepare the package for
delivery. The last step is deliver, which is catered for by Exchange support, making the package on
available on a CMIS server that the Active System(s) can access.

4.3.1 Re-activation workflow and the Context-aware Preservation Manager
This workflow has been described in D5.3 (Nilsson et al., 2015) and we thereby focus on
describing the parts that have been enhanced or altered by the implementation of the Context-
aware Preservation Manager. Those steps are highlighted in Figure 6 and described below.

Deliverable 5.4 ForgetIT

© ForgetIT Page 21 (of 55)

Figure 6: Re-activation Workflow and the role of the Context-aware Preservation Manager

(1) Upon re-activation, the context-aware preservation manager (CaPM) receives a request

from PoF-ESB that triggers a check for the existence and return of any format
transformation rules containing information about migration constraints or actions. The
Preservation Broker Contract (PBC) contains information about established rules
between the DPS and AS.

(2) The PoF-ESB sends a request (REST) for item(s) in the DPS identified by the AIP-ID,
submitting any transformation rules that may exist. The DPS returns a dissemination
information package (DIP) as response to the request. The submitted transformation
rules mean that transformation might have already taken place in the DPS, before the
DIP was assembled.

(3) When the package has been processed internally, e.g. by adding/updating context, the
collector/archiver component starts the process of creating an adjusted dissemination
information package (DIP2), a package that is adapted to the receiving active system
according to the Preservation Broker Contract. When the package procedure has
finished, the DIP2 is uploaded to an internal CMIS server. The CMIS-ID and PoF-ID is
sent back to the PoF-ESB. The CaPM logs information such as use of file format and
physical/logical structure from the re-activation process.

(4) The PoF-ESB notifies the AS that the package is ready, triggering the process of
retrieving the DIP2. The CaPM logs that this activity has taken place, and the result
thereof, both for statistical use as well as traceability.

1

2

3 4

ForgetIT Deliverable 5.4

Page 22 (of 55) www.forgetit-project.eu

4.4 Setting Change Workflow
The Setting Change workflow consists of four different phases with two different starting points (as
depicted in Figure 7): the activity monitoring which logs the bi-directional communication between
the Active System and DPS including process activities, systems in action, and digital objects
passing through, the change assessment that detects and propagate change in usage, the change
estimation suggests suitable change recommendations based on rules defined in Preservation
contract including e.g. preservation value, and use statistics. The change recommendation
propagates recommended actions to DPS, which could be of different types, such as
transformation of content or change of physical and logical content structure.

Figure 7: Setting Change Workflow, reference model [Gallo et al. 2016, p. 31]

CaPM Activity Logger: The Activity Logger provides support for monitoring of activities in PoF
workflows. A typical example is to keep track of the execution of tasks executed by components in
the workflows. This data will then serve as one input to the change assessment.

CaPM Technology watch: The Technology Watch gathers data on objects handled by the PoF
workflows. This includes information on Active System and DPS, as well as technical metadata on
the object e.g. file format. This information, combined with input from Activity Logger, forms the
basis for a change assessment which if needed triggers a change estimation. There are several
things to consider in "technology watch". The component could trigger an alert based on
thresholds related to storage quota, usage of file formats grouped by year, or changes of the actual
systems (Active System, PoF, Digital Preservation System).

CaPM Analyser: Based on an initial assessment of the need for a setting change, the change
estimation process is supported by the Analyser, which aggregates and processes the data
provided from earlier functions and provides a visual interface for human interpretation. The
Analyser may calculate a preferred setting change based on thresholds and rules, provided by e.g.
Preservation Contract, but these can be overridden via a user through the graphical interface. The
decision, be it automatic or manual, will then become a change recommendation that is handed
over to the DPS for implementation.

4.5 Influence on DoW Success/Progress Indicators
As described in the DoW of the project, the performance indicator related to workflow states:
"Seamless transition between active and archival system – based on forgetting methods". This
seamless transition is not entirely related to components in WP5, especially not with regard to the
second part, forgetting methods. The workflows described do however involve many components
outside of WP5, as intended, and by employing an Enterprise Service Bus together with the active
system adapters, the exchange support, as well as preparation of information packages for both

Deliverable 5.4 ForgetIT

© ForgetIT Page 23 (of 55)

preservation preparation and re-activation (ingest and access), the transition is, albeit not fully
seamless, nearly seamless. This to some extent also is dependent on how close the integration
between Active System Adapters and the Active Systems are.

The functionality mentioned above is supported by the Preservation Broker Contract that can hold
rules for different activities and actions in the processing chain, which assist the automation of
these actions.

ForgetIT Deliverable 5.4

Page 24 (of 55) www.forgetit-project.eu

5 Implementation Details
This section describe in some detail the component implementations, dependencies and "behind
the scene" interactions. It starts with a brief problem statement and then describes components
developed in WP5 and their relation to the workflows. The simplified component diagrams in this
section depict the WP5 components and the most relevant relations to other components or
modules; use of external tools and components (i.e. components not built in the project) are not
included in the component diagrams. The use of classes in the component diagrams are described
in each functional section. This section is mainly intended for readers interested in implementation
details and considerations.

5.1 Problem Statement
The overarching objective for WP5 is to facilitate "smooth bi-directional transition between
information management and preservation". This requires a fair amount of automation and
normalization of communication and exchange of digital objects. The components implemented in
WP5 mainly focus on exchange of digital objects, and communication of changes in the
environment, mainly to the digital preservation system.

5.2 Common Details
Unless otherwise stated, the components described in this chapter have many things in common
which are described here. Any additions or diversions are described under respective section for
the individual components.

API and I/O Formats The components are written in Java and makes use of available
technologies. For the implementation of a permanent store of data the components uses
MySQLError! Bookmark not defined. as an RDBMS6(DB) and JDBC7 for communication. The
interaction with data stored in XML is done by the use of a simple JSON API for XMLError!
Bookmark not defined. and Jersey, a RESTful API (JAX-RS)Error! Bookmark not defined. is
used for the http-based interfaces. The logging mechanism is supported by the Apache log4j
APIError! Bookmark not defined.. The communication between active system(s) and the
CMISapp is implemented using the OpenCMIS Client API8.

5.3 Collector
Component Role The Collector is the name of a group of components depicted in Figure 8 that
are invoked by the PoF middleware (Enterprise Service Bus) when digital objects and metadata
need to be collected from the active system(s). The Collector is triggered by a call to its REST
APIError! Bookmark not defined. submitting a PBC-ID that identifies the Preservation Broker
Contract (PBC) and the unique PoF-ID that bundles activities that belongs to same preservation
preparation process. The Collector starts the process by the use of the CMISapp class as an
adapter to fetch objects (files) and metadata from the active system and puts them in a dedicated
space, labelled with the unique PoF-ID, on the staging server. Before the Collector retrieved
any object it could verify that fetched objects are in line with the agreement between the
information Producer and the Archive, stated in the PBC. When objects (files) have been fetched
the FillMets class is triggered and starts to fetch metadata about the objects from the active
system, a process also supported by the CMISapp. The FillMets class saves fetched
metadata in a database stored in the PoF Middleware and then initiates the packaging process
(see 5.4) that will use the output from the Collector when creating a Submission Information
Package (SIP). The Collector uses the Preservation Broker Contract (PBC) to get hold of structure
information and rules during the preservation preparation process as described in section (5.6.1).

WP and Deliverables The Collector component has been developed within WP5 (Joint
Information and Preservation Management). This is the second release of the component that was

6 https://en.wikipedia.org/wiki/Relational_database_management_system
7 http://www.oracle.com/technetwork/java/overview-141217.html
8 http://chemistry.apache.org/java/developing/guide.html

Deliverable 5.4 ForgetIT

© ForgetIT Page 25 (of 55)

previous described in deliverable D5.3 [Nilsson et al., 2015] the contributing partners are mainly
LTU and EURIX.

API and I/O Formats The Collector component utilises common APIs as described under section
5.2. The class diagram in Figure 8 does not include “helper” classes, it includes only the major
classes of the Collector and is divided into three separate software packages (jar-files). The
Collector is part of the CollectorArchiverIngest.jar, the CMISapp is part of
mavenCMISclent.jar and the FillMets class is part of the ModsTblFill.jar.

Status and Workplan The current version of the Collector provides all expected functionalities,
although further improvements are planned for work outside of this project. This would include
extended interaction with the CaPM and (PoF) middleware.

License The source code of this component is released as Open Source, as part of the PoF
Middleware code.

ForgetIT Deliverable 5.4

Page 26 (of 55) www.forgetit-project.eu

Figure 8: Class diagram for Collector component

5.4 Archiver
Component Role The Archiver is the name of a group of components, depicted in Figure 9 that
are designed for the creation of Submission Information Packages (SIPs)9. The PoF Middleware
manager triggers the ForgetITsip class to; create the package structure (content, metadata,
and system folders), generate a fixity value (hash sum) for each object (file) supported by the
HashSum class, and continue with the identification of file format (MIME), extraction of technical
metadata from each object, saving it in a database managed by the Droid class. The
ForgetITsip adds generated contextualization metadata files [Greenwood et al., 2016] to the
metadata folder and the MetsCreator class generates the metadata files (METS, MODS etc.),
that describes the content of the SIP, adapted for the ingest mechanism at the receiving digital
preservation system (DPS). Before the Archiver initiates a transfer to a receiving preservation
system it uses the CreateTarFile class to compress the SIP to a tar or zip package. During the
process of creating a SIP the Archiver uses the PoF-ID to keep track of the activities and objects
that are related to a specific preservation preparation process. The Archiver uses the Preservation
Broker Contract (PBC) to get hold of structure information and rules during the preservation
preparation process as described in section 5.7.1.

API and I/O Formats The Archiver component utilises common APIs as described under section
5.2 with the following additions. The compression of the SIP is supported by Apache Commons
Compress API10. The MetsCreator uses the METS API11 and file identification is based on the
use of DROID12. The creation of fixity checksums is executed by the support of md5deep13. Figure
9 depicts the class diagram without “helper” classes, it includes only the major classes of the
Archiver and build to the ForgetITsip.jar software package.

Status and Workplan The current version of the Archiver provides all expected functionalities
although further improvements are planned for work outside of this project. This would include
extended interaction with the CaPM and (PoF) middleware.

License The source code of this component is released as Open Source, as part of the PoF
Middleware code.

9 http://documents.clockss.org/index.php/Definition_of_SIP
10 https://commons.apache.org/proper/commons-compress/
11 http://hul.harvard.edu/mets/
12 http://www.nationalarchives.gov.uk/information-management/manage-information/preserving-digital-records/droid/
13 https://en.wikipedia.org/wiki/Md5deep

Deliverable 5.4 ForgetIT

© ForgetIT Page 27 (of 55)

Figure 9: Class diagram for Archiver component

5.5 Access
Component Role The Access component is a group of components based on the Collector
and helper classes, depicted in Figure 10, that is responsible for fetching and unpacking content
packages from the DPS to active systems. The re-activation process starts with unpacking a
Dissemination Information Package (DIP) as retrieved from the DPS. This takes place on the
Staging Server where the StartUpload class creates a folder structure on the server named by a
PoF-ID. After this, MovingFiles moves the files into this structure. The ZipUnzip class
executes the uncompressing procedures. There is also an option to unpack the objects into a
folder structure defined by an XML file (created at pre-ingest to reflect the active system structure).
After this, other middleware components can process the objects if needed. The content and
metadata is then exposed in the resulting folder by a CMIS server that enables access for the
active system.

API and I/O Formats The Access component utilises common APIs as described under section
5.2 with the addition of Apache Commons Compress API supporting the uncompressing of DIP.
The classes making up the Access component are built to the CollectorArchiverAccess.jar
software package.

Status and Workplan The use of the Access component in the re-activation workflow is limited
but it provides the expected functionality of unpacking and restructure of content to folder
structures according to instructions. Further improvements are planned for work outside of this
project, which would include extended interaction with the CaPM and (PoF) middleware.

ForgetIT Deliverable 5.4

Page 28 (of 55) www.forgetit-project.eu

License The source code of this component is released as Open Source, as part of the PoF
Middleware code.

Figure 10: Class diagram for the Access component

5.6 Collector/Archiver/Access-RESTful services
REST APIs are published using JerseyError! Bookmark not defined., the reference
implementation of JAX-RS specification for RESTful web services. In the following we list the
available APIs with the expected parameters and the output format. Table 1 shows the common
REST APIs for the CaPM-PBC component.

Server path /forgetit/restservice/collectorarchiver/cmis
Supported response types TEXT
HTTP request type GET
Description RESTful API for the Collector/Archiver component

Table 1: Collector/Archiver-REST common interface

5.6.1 Collector-RESTful-API
Table 2 shows a selected subset of RESTful services exposing information from the Collector
component. The selection has been made based on the importance of providing basic
functionality.

Deliverable 5.4 ForgetIT

© ForgetIT Page 29 (of 55)

Request path /downloadfile/{pimo11}/{abx-123-Aa}/{pimo:1427296226816:8}/{objid}/{pbc-1}
Response downloadfile, pimo11, abx-123-Aa, pimo:1427296226816:8, pbc-1
Description Parameters:downloadfile= path to internal method, pimo11=internal identification of CMIS-server,

abx-123-Aa=unique internal process identifier (PoF-ID), pimo:1427296226816:8=identification of
a single object exposed by the adapter (CMIS-object-Id),objid=instruction stating that the object to
be fetched is identified by an object-id, pbc-1=preservation broker contract identifier.
Returns information: submitted parameters as confirmation for request
Example of use: used by the PoF middleware manager for triggering the Collector component to
fetch an object from the active system, identified by its id, exposed by a CMIS adapter. This
process includes the construction of a folder structure with a parent folder named by the PoF-ID
and the underlying folders content, metadata, and system. It saves the downloaded object in the
content folder and other descriptive info in the metadata folder.

Request path /download/{EURIX}/{abx-124-Ab}/{workspace://SpacesStore/c85123e5-39c3-4fb2-b8ae-
ed12d538ca67}/{objid}/{pbc-1}

Response download, EURIX, abx-124-Ab
Description Parameters: download= path to internal method, EURIX =internal identification of CMIS-server,

abx-124-Ab=unique internal process identifier (PoF-ID), workspace://SpacesStore/c85123e5-
39c3-4fb2-b8ae- ed12d538ca67=identification of a folder exposed by the adapter (CMIS-folder-
Id), objid=instruction stating that the folder is identified by a folder-id, pbc-1=preservation broker
contract identifier.
Returns information: submitted parameters as confirmation for request
Example of use: used by the PoF middleware manager for triggering the Collector component to
fetch objects from a specified folder in the active system, identified by the id, exposed by a CMIS
adapter. This process includes the construction of a folder structure with a parent folder named by
the PoF-ID and the underlying folders content, metadata, and system. It saves the downloaded
object in the content folder and other descriptive info in the metadata folder.

Request path /{download}/{EURIX}/{abx-125-Ac}/{/content/docs/}/{path}/{pbc-1}
Response download, EURIX, abx-125-Ac
Description Parameters: download=path to internal method EURIX =internal identification of CMIS-server,

abx-125-Ac=unique internal process identifier (PoF-ID), /content/docs/=identification of a folder
exposed by the adapter (CMIS-folder-path), path=instruction stating that the folder is identified by
a folder-path, pbc-1=preservation broker contract identifier.
Returns information: submitted parameters as confirmation for request
Example of use: used by the PoF middleware manager for triggering the Collector component to
fetch objects from a specified folder in the active system, identified by the id, exposed by a CMIS
adapter. This process includes the construction of a folder structure with a parent folder named by
the PoF-ID and the underlying folders content, metadata, and system. It saves the downloaded
object in the content folder and other descriptive (e.g. logical structure) info in the metadata
folder.

Table 2: Collector-REST-API

ForgetIT Deliverable 5.4

Page 30 (of 55) www.forgetit-project.eu

5.6.2 Archiver-RESTful-API
Table 3 shows a subset of RESTful services exposing information from the Archiver component,
based on importance for fulfilling the basic functionality needed for the preservation preparation
workflow.
Request path /updatemods/{abx- 123-Aa}/{personal}/{Francesco}/
Response abx-123-Aa, personal, Francesco
Description Parameters: updatemods=path to internal method, abx-123-Aa=unique internal process identifier

(PoF-ID), personal=identifies column name in mods table, Francesco=update value.
Returns information: submitted parameters as confirmation for request
Example of use: provides the ability to update metadata as part of the SIP. Identifies the PoF
process it belongs to that later becomes a SIP-Id, the column in db that holds the data, and the
value.

Request path /packageandzip/{abx-123-Aa}/
Response abx-123-Aa
Description Parameters: packageandzip=path to internal method, abx-123-Aa=unique internal process

identifier (PoF-ID)
Returns information: submitted parameter as confirmation for request
Example of use: triggers the start of the process for creating a SIP as stated in a PBC e.g.
creating a folder structure, a mets XML-file containing mods structure, compressing content files
and metadata files to a SIP package file (zip/tar). This process is triggered by the PoF manager.

Table 3: Archiver-REST-API

5.6.3 Access-RESTful-API
Table 4 shows a subset of RESTful services exposing information from the Access component that
is part of the Collector/Archiver. The selected services provide functionality important for the Re-
activation workflow.
Request path /unzippackage/{abc-321-Bb}/{dip-123-Aa.zip/
Response abc-321-Bb, dip-123-Aa.zip
Description Parameters: unzippackage=path to internal method, abc-321-Bb=unique internal process

identifier (PoF-ID), dip-123-Aa.zip=identifies the DIP.
Returns information: submitted parameters as confirmation for request
Example of use: uncompress a DIP package in a folder structure identified by the PoF-ID. This
process is triggered by the PoF manager. This process is triggered by the PoF manager.

Request path /buildstructure/{abx-123-Aa}
Response abx-123-Aa
Description Parameters: buildstructure=path to internal method, abx-123-Aa=unique internal process

identifier (PoF-ID).
Returns information: submitted parameter as confirmation for request
Example of use: This service is used in a scenario where there exists a physical structure file
(structure.xml) in the DIP that is fetched from the preservation system. It reads the structure file,
re-creates the folder structure, and moves the files to the folders according to the specification in
structure.xml. If no structure.xml exists or is “out-dated” a default structure could be used. The
instructions for using this feature is stated in the PBC and is triggered by the PoF manager.

Table 4: Access-REST-API

5.7 Context-aware Preservation Manager
Component Role The Context-aware Preservation Manager (Figure 11) is responsible for
supporting the PoF middleware activities by the creation of a submission agreement, a
Preservation Broker Contract (PBC), which needs to be established between the producer
information system (active system) and the digital preservation system (DPS). The PBC is an
XML-file containing specifications and regulations in the form of structured information and rules
that upholds the agreed-on structure and content of information packages and execution paths in
the PoF middleware. The CaPM-PBC is always part of the execution of a preservation preparation
workflow defined in D8.5 [Gallo et al., 2016] by receiving and dispatching requests from other PoF
middleware components and by interacting with the PoF workflow infrastructure. A typical example
of such interaction is provided by the Collector component: when retrieving objects from the active

Deliverable 5.4 ForgetIT

© ForgetIT Page 31 (of 55)

system it will always interact with the CaPM-PBC to identify from which active system it will fetch
the objects by the retrieval of connection end-point information, if there are instructions regarding
the fetch, such as if physical/logical structure should be included, and if fetched objects is
according to expectations regarding anticipated mime types, and that limit values for a single fetch
is not exceeded. Another example is when the Archiver component creates the submission
information package: the Archiver retrieves information about metadata standards to use. The
Archiver also retrieves information from the PBC about the preservation organization, contact
information, systems etc. used as provenance metadata. It also retrieves information about the
package folder structure, definition of fixity algorithm, and the connection endpoint of the
preservation system. Another example is related to the re-activation of content archived in the
Preservation System, the CaPM-PBC provides information such as if there should be a migration
at access and the migration path for a specific mime-type.

Besides being part of the preservation preparation and re-activation workflows the CaPM-PBC
supports the scheduled transformation mechanism executed by the Preservation Aware Storage
System [Chen et al., 2016] by providing agreed rules on the management of original objects and
any copies. The CAPM-PBC may also contain information about agreed management of copies in
the preservation system, as well as mechanisms regarding integrity checks, and how events in the
preservation system should be communicated back to the active system. This information is not
intended to be executed “on-the-fly” in the preservation system, instead used as basis for manual
configuration of mechanisms in the preservation system. The CaPM-PBC is invoked through a
REST API based on the request path; different information from a specific PBC, identified by its ID,
is retrieved. Another responsibility for the CaPM component is to support monitoring of DP
activities (Activity Logging) executed by other PoF middleware components. A typical example for
the use of the CaPM-AL is to check status of the execution of activities in the preservation
preparation workflow; the Archiver checks the logs created by the CaPM-AL to ensure that
activities that should be executed according to the PBC has been carried out without errors. If an
error is detected it sends a message to the PoF workflow manager. A REST API could also be
invoked to request information from the CaPM-AL. Due to it's location in the middle of the
interaction between active systems and preservation systems, the CaPM is also able to keep track
of every object that passes through the PoF middleware. This functionality is referred to as
Preservation Planning Support (PPS) and provides a bi-directional identification of systems
involved, identified by the PBC, and the identification and logging of mime type versions that are
part of an interaction. This information is useful as input to different preservation planning
scenarios for detection of file format obsolescence and decision support in the choice of target file
format in a migration scenario. This information is available by a REST API as a JSON output
which can be imported by any preservation system and also provided via a web GUI through the
CaPM-PPS.

WP and Deliverables The CaPM is developed within WP5 (Joint Information and Preservation
Management). This is the first release of the component that was previously described in
deliverable D5.3 [Nilsson et al., 2015], the contributing partners are mainly LTU, EURIX, IBM,
DFKI, and dkd.

API and I/O Formats The CaPM component utilises common APIs as described under section 5.2
with the following additions. The web-GUI provided by the CaPM-PPS is implemented by the use
of PrimeFaces14 and JSF API15 and the DB communication uses Java Persistence API. The
classes that constitute the CaPM component are buillt to the CaPM.jar software package and the
capmmimeviewer.war

Status and Workplan The current solution for the Context-aware Preservation Manager provides
all functionalities expected within the project. The integration of it still needs improvements; which
for example could mean different execution paths in the (PoF) Middleware based on information
from the Preservation Broker Contract.

14 http://www.primefaces.org/
15 http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

ForgetIT Deliverable 5.4

Page 32 (of 55) www.forgetit-project.eu

License The source code of this component is released as Open Source, as part of the PoF
Middleware code.

Figure 11: Class diagram for Context-aware Preservation Manager component

Deliverable 5.4 ForgetIT

© ForgetIT Page 33 (of 55)

5.7.1 CaPM - Preservation Broker Contract (CaPM-PBC)
This component is responsible for the management of agreements that provide structure to the
relationships and interactions between Active Systems and DPS. The information that is managed
by the CaPM-PBC is defined in an XML-schema and based on this schema a default PBC (XML) is
generated that reflects the agreement between the producer (active system) and the archive
(preservation system). A PBC contains structured information divided into the different sections of
identification, collectionType, services, actions, and rules as depicted in Figure 12. The information
from each section of the PBC is available through a REST API, which makes it available from any
clients that supports REST and a JSON parser. A full-fledged version of the PBC-schema and an
example of a generated PBC-file is accessible in the appendix.

Figure 12: CaPM - Preservation Broker Contract (PBC)

5.7.1.1 CaPM-PBC-identification	
The identification section (Figure 13) contains information about the PBC, such as identification of
the contract, preservation level which identifies the template from which the contract is generated,
a preservation value that defines the threshold level for appraisal, and information active system
and preservation system participated in the interaction defined by the contract. Information from
this PBC section is accessible through a REST API described in detail in 5.7.1.3

Figure 13: CaPM - PBC - identification section

ForgetIT Deliverable 5.4

Page 34 (of 55) www.forgetit-project.eu

5.7.1.2 CaPM-RESTful	services	for	the	Preservation	Broker	Contract	(PBC)	
REST APIs are published using Jersey, the reference implementation of JAX-RS specification for
RESTful web services. In the following we list the available APIs with the expected parameters and
the output format. Table 5 shows the common REST APIs for the CaPM-PBC component.

Server path /capmrest/webresources/capmservice
Supported response types JSON
HTTP request type GET
Description CaPM-PBC REST API: returns information from

specified sections in a Preservation Broker Contract
(PBC)

Table 5: CaPM-PBC REST common interface

5.7.1.3 CaPM–PBC–REST-identification	section	
Table 6 shows a subset of RESTful services exposing information from the CaPM-PBC identifica-
tion section. There exists similar services for exposing every element from the contract, but those
described here cover the most relevant information.
Request path /preservationsystem/{pbc-1}
Response {"serviceId":"sid-2","location":"Italy","name":"EURIX DSpace",

"ownedBy":"EURIX Group","Id":"ps-123","version":"1.0.1"}
Description Parameters: preservationsystem=path to internal method, pbc-1= identification of the

preservation broker contract (PBC).
Returns information: about the preservation system related to the PBC.
Example of use: by the CaPM-PPS component that logs content information related to a
preservation system part of PoF workflows.

Request path /activesysteminfo/{pbc-1}
Response {"serviceId":"sid-1","name":"EURIXGROUP",

"ownedBy":"EURIXGROUP","Id":"eurix-mw-1",
"type":"personal information from middleware","version":"1.0"}

Description Parameters: activesysteminfo=path to internal method, pbc-1= identification of the preservation
broker contract (PBC).
Returns information: about the producer information system (active system) part of an
interaction.
Example of use: this is used by the Archiver component as metadata in SIP and by the CaPM-
PPS component as part of statistical data that relates objects to specific information systems.

Request path /contact/{pbc-1}
Response {"ownerName":"Goran Lindqvist",,"ownerEmail":"goran@ltu.se",

"alternativeContactName":"Ingemar Andersson",
"alternativeContactEmail":"ingo@ltu.se}

Description Parameters: contact=path to internal method, pbc-1= identification of the preservation broker
contract (PBC).
Returns information: personal contact information about persons responsible for transfer of
objects from producer side (active system).
Example of use: by the Archiver component as subset of provenance metadata in SIP.

Request path /preservationlevel/{pbc-1}
Response {"preservationLevel":"premium"}
Description Parameters: preservationlevel=path to internal method, pbc-1= identification of the preservation

broker contract (PBC).
Returns information: that specifies the PBC base configuration (template) selected by the
information producer (users of active system).
Example of use: defines a name for different types of PBC that reflects different configurations
as premium, standard, or basic. Different preservation service providers could offer different types
of PBC templates. The purpose is to facilitate a simplified PBC configuration process for novice
users.

Table 6: CaPM-PBC-REST-Identification

5.7.1.4 CaPM-PBC-CollectionType	section	
The collectionType section, depicted in Figure 14, of the PBC includes information about size and
quantity limits, list of expected file formats, stating if source file name should be preserved, and a

Deliverable 5.4 ForgetIT

© ForgetIT Page 35 (of 55)

list of transformation rules defining the event trigger, source and target file format for each
migration action. The information in this PBC-section is accessible by a REST API described in
detail in

Figure 14: CaPM - PBC - collectionType section

5.7.1.5 CaPM–PBC–REST-collectionType	section	
Table 7 shows a subset of RESTful services exposing information from the CaPM-PBC
collectionType section. There exists similar services for exposing every element from the contract,
but those described here show the more elaborate ones.

ForgetIT Deliverable 5.4

Page 36 (of 55) www.forgetit-project.eu

Request path /mimetypes/{pbc-1}
Response [{"mimeType":"application\/pdf"},

{"mimeType":"image\/jpeg"},
{"mimeType":"image\/png"},
{"mimeType":"image\/bmp"},
{"mimeType":"image\/tiff"}]

Description Parameters: mimetypes=path to internal method, pbc-1= identification of the preservation broker
contract (PBC).
Returns information: about “acceptable” mime types defined as an agreement between
information producer (active system) and archive (preservation system).
Example of use: by the Collector component comparing list of acceptable mime types for objects
on pending request to be fetched from active system.

Request path /transformation/{pbc-1}
Response [{"onAction":"ingest","origPuid":"fmt\/22",

"keepOriginal":"yes","origMimeType":"image\/png",
"serviceId":"sid-3","targetPuid":"fmt\/11",
"targetMimeType":"image\/tiff"},
{"onAction":"access","origPuid":"fmt\/22",
"keepOriginal":"yes","origMimeType":"image\/bmp",
"serviceId":"String","targetPuid":"fmt\/11",
"targetMimeType":"image\/jpeg"}]

Description Parameters: transformation=path to internal method, pbc-1= identification of the preservation
broker contract (PBC).
Returns information: rules for automated migration actions containing information defining
which objects should be migrated to specified file formats identified by its mime type. This
information also states the event when migration action should be executed (ingest/access).
Example of use: could be used in migration scenario executed in the PoF middleware as part of
preservation preparation or re-activation workflow. It is also possible to use this as basis for
configuration of migration actions executed at preservation system. The use of this rule is not
supported by the PoF middleware in this release.

Request path /keepsourcefilename/{pbc-1}
Response {"keepSourceFileName":"true"}
Description Parameters: keepsourcefilename=path to internal method, pbc-1= identification of the

preservation broker contract (PBC).
Returns information: that defines if source file name and path should be kept as provenance
metadata.
Example of use: as input to the Archiver component as a rule defining how to manage source
data and if it should be added as metadata in SIP. This information could also be used as a rule
at preservation system side when creating an Archival Information Package (AIP).

Request path /collectionlabel/{pbc-1}
Response {"label":"private photos"}
Description Parameters: collectionlabel=path to internal method, pbc-1= identification of the preservation

broker contract (PBC).
Returns information: categorisation metadata.
Example of use: the Archiver components use this as metadata when creating a SIP. It could
also be used in “collection” scenarios to keep track of objects fetched at different occasions.

Table 7: CaPM-PBC-CollectionType

5.7.1.6 CaPM-PBC-services	section	
The services section, depicted in Figure 15, of the PBC provides information about tools and
service endpoints that defines how to communicate with a service. The information in this section
is used by different components in the PoF middleware either during execution of PoF workflows
or as static information used as the basis for component configuration and documentation of an
agreement between active system and preservation system. The information in this PBC-section is
accessible by a REST API described in detail in 5.7.1.7.

Deliverable 5.4 ForgetIT

© ForgetIT Page 37 (of 55)

Figure 15: CaPM - PBC - services section

5.7.1.7 CaPM-PBC-REST-services	section	
Table 8 shows a subset of RESTful services exposing information from the CaPM-PBC services
section. The selection was made to show the breadth of services.

Request path /sidactivesystem/{pbc-1}
Response {"endpointType":"CMIS",

"description":"CMIS connection to PIMO CMIS endpoint",
"name":"stainer","responseDataFormat":"XML","password":"stainerstainer",
"user":"stainer",
"endpoint":"http:\/\/192.168.253.8:8080\/cmis\/atom11","version":"1.0"}

Description Parameters: sidactivesystem=path to internal method, pbc-1= identification of the preservation
broker contract (PBC).
Returns information: about the connection endpoint to active system.
Example of use: by the Collector component at execution as connection information to a CMIS-
endpoint for fetching of content from active system.

Request path /sidpreservationsystem/{pbc-3}
Response {"endpointType":"REST_JAX_RS",

"description":"DSpace repository for ForgetIT project",
"name":"EURIX repository endpoint","responseDataFormat":"JSON",
"password":"String","user":"String",
"endpoint":"http:\/\/archive\/oais-api\/restws\/ingest\/sip",
"version":"1.1"}

Description Parameters: sidpreservationsystem=path to internal method, pbc-1= identification of the
preservation broker contract (PBC).
Returns information: about the connection endpoint to preservation system.
Example of use: by the Archiver component at execution as connection information when
connecting to a preservation system for transfer of Submission Information Package (SIP).

Request path /serviceinfo/{pbc-1}
Response {"endpointType":"Storlet",

"description":"JPEG File Interchange Format to PNG",
"name":"Stellent Image Export","responseDataFormat":"JSON",
"password":"String",
"user":"String",
"endpoint":"Preservation-aware Storage Services","version":"1.01"}

Description Parameters: serviceinfo=path to internal method, pbc-1= identification of the preservation broker
contract (PBC).
Returns information: about a service endpoint that is part of the interaction between an active
system and preservation system executed somewhere in a defined PoF workflow.
Example of use: the Collector/Archiver components use this information when establishing a
communication endpoint to an active system or preservation system. It could also define other
services/tools/algorithms that is used by a component in a PoF middleware workflow.

Table 8: CaPM-PBC-REST-Services

ForgetIT Deliverable 5.4

Page 38 (of 55) www.forgetit-project.eu

5.7.1.8 CaPM-PBC-actions	section	
The actions section, depicted in Figure 16, of the PBC provides information about tools and service
endpoints that defines how to communicate with a service. The information in this section is used
by different components in the PoF middleware either at execution in PoF workflows or as static
information as basis for component configuration and documentation of an agreement between
active system and preservation system. The information in this PBC-section is accessible by a
REST API described in detail in 5.7.1.9.

Figure 16: CaPM - PBC - actions section

5.7.1.9 CaPM-PBC-REST-actions	section	
Table 9 shows a subset of RESTful services exposing information from the CaPM-PBC actions
section. The selection shows a variety of the services that expose the contract information.

Deliverable 5.4 ForgetIT

© ForgetIT Page 39 (of 55)

Request path /downloadstructure/{pbc-1}
Response {"downloadStructure":"true"}
Description Parameters: downloadstructure=path to internal method, pbc-1= identification of the preservation broker

contract (PBC).
Returns information: that defines if “structure” information should be part of data fetched from active system.
Example of use: by the Collector component as configuration of CMIS client when fetching objects from
active system.

Request path /packageencoding/{pbc-1}
Response {"packageEncodingType":"zip"}
Description Parameters: packageencoding=path to internal method, pbc-1= identification of the preservation broker

contract (PBC).
Returns information: that specifies preferred package encoding (zip, tar etc.).
Example of use: by the Archiver component when creating a SIP adjusted to receiving preservation system.

Request path /onstoragefixity/{pbc-1}
Response {"Interval":"24","intervalUnit":"month","algorithm":"md5"}
Description Returns information: about an integrity protection rule that reflects a preservation policy.

Example of use: this is not part of any PoF workflow; intended for use as a stated agreement having impact
on a preservation system configuration.

Request path /onstorageencrypt/{pbc-1}
Response {"keyAtTransfer":"SSL","keyAtRest":"SSE"}
Description Parameters: onstorageencrypt=path to internal method, pbc-1= identification of the preservation broker

contract (PBC).
Returns information: about a rule that reflects a security policy.
Example of use: as part of object management in PoF middleware defining need of encryption mechanisms
at transfer and storage. This should also have an impact on preservation system configuration. The use of this
rule is not supported by the PoF middleware in this release.

Request path /onstoragelevel/{pbc-1}
Response {"level":"silver"}
Description Parameters: onstoragelevel=path to internal method, pbc-1= identification of the preservation broker contract

(PBC).
Returns information: about a rule that defines management of object copies at the preservation system side.
This value could e.g. be defined as premium, gold, silver, or bronze.
Example of use: as input to storage configuration where each level could be defined as for platinum; at least
three copies at different locations with different disaster threats to bronze level stating; two copies that is not
collocated.

Request path /onstoragelocation/{pbc-1}
Response {"location":"EU"}
Description Parameters: onstoragelocation=path to internal method, pbc-1= identification of the preservation broker

contract (PBC).
Returns information: reflecting a preservation policy defining restrictions on storage location.
Example of use: as input to storage configuration at preservation system side reflecting legal restrictions on
storage location.

Request path /onstoragemultidelete/{pbc-1}
Response {"multiFactorDelete":"yes"}
Description Parameters: onstoragemultidelete=path to internal method, pbc-1= identification of the preservation broker

contract (PBC).
Returns information: reflecting a preservation policy defining restrictions on deletes action.
Example of use: as input to storage configuration at preservation system side reflecting legal restrictions on
object management on order to prevent accidental deletion of objects.

Request path /onstorageretentionperiod/{pbc-1}
Response {"min":"0","endOfRetentionAction":"0","max":"0","unitType":"GB",

"nextLocation":"none","nextLevel":"bronze"}
Description Parameters: onstorageretentionperiod=path to internal method, pbc-1= identification of the preservation

broker contract (PBC).
Returns information: reflecting a preservation policy defining rules on lifecycle management of objects at
preservation system side.
Example of use: as input to storage configuration that could trigger transfer of objects to low-cost storage or
scheduled deletions.

Request path /onstorageversioning/{pbc-1}
Response {"versioning":"2"}
Description Parameters: onstorageversioning=path to internal method, pbc-1= identification of the preservation broker

contract (PBC).
Returns information: that defines a rule specifying number of versions that needs to be managed.
Example of use: as input to preservation system, exceeding this number could mean that older versions
could be discarded. Not part of scenario executed in the ForgetIT project.

Request path /onstoragesize /{pbc-1}
Response {"max":"0","unitType":"GB"}
Description Parameters: onstoragesize=path to internal method, pbc-1= identification of the preservation broker contract

(PBC).
Returns information: about agreed maximum storage volume as a trigger for the need of a review of stated
agreement.
Example of use: as a way to limit the PBC validity.

Table 9: CaPM – PBC-REST-Actions

ForgetIT Deliverable 5.4

Page 40 (of 55) www.forgetit-project.eu

5.7.1.10 CaPM-PBC-rules	section	
The rules section, depicted in Figure 17, of the PBC provides the ability to specify various rules
and its bundled actions, reflecting preservation policies that can be applied for different activities in
a PoF workflow. This information could be applied either at execution time or used as static
information as the basis for configuration of a PoF component activity. The information in this PBC-
section is accessible by a REST API described in detail in 5.7.1.11.

Figure 17: CaPM - PBC - rules section

5.7.1.11 CaPM-PBC-REST-rules	section	
Table 10 shows one example of a RESTful service exposing information from the CaPM-PBC rules
section. Rules should be constructed in similar ways, and thereby this service should work well for
many different cases.
Request path /ruleparameter/{pbc-3}
Response [{"dependency":"none","condition":"equals","name":"PL1","value":"premium"},

{"dependency":"PL1","condition":"aboveEquals","name":"QT1","value":"0.95"},
{"dependency":"QT1","condition":"equals","name":"mimetype","value":"default"},
{"dependency":"PL1","condition":"aboveEquals","name":"QT2","value":"0.92"},
{"dependency":"QT2","condition":"equals","name":"mimetype","value":"image\/jpg"]

Description Returns information: about “rules”, agreed upon between information producer and archive, on
how to manage objects and its copies in transformation actions at storage level. The response
contains information relating Quality Thresholds (QT) for different mime types. There could be
different “rules” related to different Preservation Levels (PL). The value of QT is used in
comparison to the result returned from the quality of a migrated object. If the QT is reached a
related action (not part of the example response) is expressing if the original object could be
deleted or not and how to handle copies. The transformation and quality assessment actions are
executed by storlets close to data in the Preservation Aware Storage Engine.
Example of use: the Preservation Aware Storage System uses this in scheduled transformation
actions as rules executed in the Storlet Engine component presented in D7.4 [Chen et al., 2016].

Table 10: CaPM-PBC-Rules

5.7.2 CaPM - Activity Logger (CaPM-AL)
The Activity Logger is the functional entity, part of the Context-aware Preservation Manager
(CaPM) component, that is responsible for logging of actions executed by PoF Middleware
components. This entity makes it possible to monitor activities in the PoF middleware and to take
actions depended on the result of a functional execution in a middleware component. The features
of this component make it possible to execute an alternative workflow depending on the status of a
component execution. For example, there is a possibility to check logged entries with error status
containing information that identifies the function causing the problem. Another example is the use
of threading mechanisms in the PoF middleware that makes it difficult to know when a specific
function has finished its execution; therefore, the logging by the CaPM-AL could be used to keep
track of execution status in each PoF workflow. The information created by the CaPM-AL can be
requested by a REST API, which makes it available from any clients that supports REST and a
JSON parser as described in detail in 5.7.2.1. The logging mechanism in CaPM-AL is based on the

Deliverable 5.4 ForgetIT

© ForgetIT Page 41 (of 55)

use of Apache log4j and part of the logged data is fetched from the CaPM-PBC and the output
during processing is stored in log4j-application.log file and certain output data is stored
permanently in DB.

5.7.2.1 CaPM-AL-RESTful-API	
Table 11 shows a subset of RESTful services exposing information from the CaPM-AL. These
services use the same base service path as defined in Table 5.
Request path /collectorarchiveringestloginfo/{abx-221-a}
Response {"CollectorArchiveIngest module":["2015-11-30 07:43:10 INFO Collector:83 -

[CollectorArchiverIngest:Collector:run] started","2015-11-30 07:43:10 INFO
Collector:215 - CollectorArchiverIngest:Collector:run, OnetestIng-mw231 Start
downloading file from CMIS server","2015-11-30 07:43:10 INFO Collector:529 –
CollectorArchiverIngest:Collector:createFolderOnHD ...etc

Description Returns information: from the log4j-application.log file filtered on logged entries with INFO as
status and from a specified functional entity identified by its request path. This information is
logged as a tracker for process status and could be executed inside a PoF component. Every
entry is identified by a UUID (PoF-Id) that is generated for each workflow in the PoF middleware.
The PoF-Id is linked to a PBC-Id and logged in a DB handled by the ProcessInfo class as
depicted in the CaPM class diagram in Figure 13.
Example of use: the Collector and Archiver components have implemented support for this in
every functional entity and use this for logging of process status. The response shows a subset
from the log added by the Collector at start of fetching content from an active system.

Request path /errorlog/{abx-221-a}
Response {"Error":["2015-11-30 09:12:45 ERROR PbcReader:54 - CaPM:PbcReader():error..:

\/opt\/forgetit\/run\/schema\/Value1.xml (No such file or directory)","2015-12-01
08:16:09 ERROR LogWriter:31 – abx-221-a: ...etc

Description Returns information: from the log4j-application.log file filtered on logged entries with ERROR as
status. Every entry is identified by a UUID (PoF-Id) that is generated for each workflow in the PoF
middleware. The PoF-Id is linked to a PBC-Id and logged in a DB handled by the ProcessInfo
class as depicted in the CaPM class diagram in Figure 13.
Example of use: the Collector and Archiver components have implemented support for this in
every functional entity that has a catch of exceptions. The Archiver uses this for detection of any
errors before start of the creation of a submission information package (SIP). If an error is
detected an alternative workflow of actions is executed depended on error code.

Table 11: CaPM-Activity Logger-REST-API

5.7.3 CaPM – Preservation Planning Support (CaPM-PPS)
It might be argued that the functionality supported by the Preservation Planning Support (PPS) is a
natural consequence of CaPMs location as a broker between active information systems and
preservation systems, and this is true; there is no better location for a component with the
responsibility to monitor evolution of technology (technology watch) as depicted in Figure 7
“Setting Change Workflow”. The PPS identifies and logs every single object that is passing through
the PoF middleware in a bi-directional communication, executed in the preservation preparation
workflow as depicted in Figure 3 and re-activation workflow as depicted in Figure 5. Besides the
logging of objects it also keep track of the systems involved in the PoF workflows. With this
information as a basis the PPS is able to support different scenarios; a preservation system could
set up technology watch triggers for different thresholds based on the use of file format; what is
requested for re-use by active systems and what is appraised for preservation. A preservation
system could also make a request for usage statistics for a specific file format to be used as a
complement to its internal preservation-planning component. The data held by the CaPM-PPS
could also be used as preparation of input for a re-activation scenario (Figure 5); it could state that
a specific version of a system is able to use a specific range of file formats as a basis for a format
transformation specification registered in a PBC. Every object is identified by the use of DROID16,
which generates a PRONOM Unique Identifier (PUID)17 for each identified file format. This makes
it possible to link the data generated by this component to the PRONOM18 technical registry held
by The National Archives. The PRONOM registry provides information about an identified file

16 https://github.com/digital-preservation/droid
17 http://www.nationalarchives.gov.uk/aboutapps/pronom/puid.htm
18 https://www.nationalarchives.gov.uk/PRONOM/

ForgetIT Deliverable 5.4

Page 42 (of 55) www.forgetit-project.eu

format containing links to external tools and services useful in preservation planning (migration
pathway planning) scenarios. The information from created by the CaPM-PPS could be requested
by a REST API as described in detail in 5.7.3.1, which makes it available from any clients that
supports REST and a JSON parser. The CaPM-PPS also provides a Web based User Interface,
depicted in Figure 18 that exposes a summarization of identified file formats that has been
managed by the PoF middleware. The first version of the Web GUI provides the possibility to filter
on active systems and mime type classifications. The class diagram depicted in Figure 19 shows
the Fileinfo class that’s managing the information about files and systems involved in PoF
workflows, the other classes in Figure 19 is helper classes for visualizing the data as shown in
Figure 18.

Figure 18: Web interface of the CaPM-Preservation Planning Support (CaPM-PPS), that

shows summarized values on number of objects that has been managed by the
PoF middleware grouped on file format version per year. It is possible to filter on

active system and file format classification.

Deliverable 5.4 ForgetIT

© ForgetIT Page 43 (of 55)

Figure 19: Class diagram Context-aware Preservation Manager component – Preservation
Planning Support – Web-GUI

ForgetIT Deliverable 5.4

Page 44 (of 55) www.forgetit-project.eu

5.7.3.1 CaPM-PPS-REST-API	
Table 12 shows a subset of RESTful services exposing information from the CaPM-PPS. These
services use the same base service path as defined Table 5 and were selected to show
possibilities of the PPS.

Request path /countfilesandgroupdate
Response [{"logdate":"2016-01-11","filename":"Acrobat PDF 1.2 - Portable Document

Format","nmbr":"1","fileversion":"1.2"},
{"logdate":"2016-01-11","filename":"Extensible Markup
Language","nmbr":"1","fileversion":"1.0"},
{"logdate":"2016-01-11","filename":"JPEG File Interchange
Format","nmbr":"1","fileversion":"1.02"},
{"logdate":"2016-01-11","filename":"MPEG-1 Program
Stream","nmbr":"1","fileversion":"none"},{"logdate":"2016-01-
11","filename":"Windows Bitmap","nmbr":"1","fileversion":"3.0"}]

Description Returns information: from log data that keep track of every object passing the PoF middleware
containing information about the log date, file format, version, and number of files.
Example of use: as statistical use of file format data to any preservation planning functional
entity in an OAIS compatible preservation system.

Request path /fileinfodatesystemversion/{2015}/{EURIX}/{1.2}
Response [{"processType":"ingest","logdate":"2016-01-11","id":2,"system":"EURIX content

management","pbaId":"pbc-2",
"filename":"Acrobat PDF 1.2 - Portable Document Format",
"systemtype":"Content Management System",
"mime":"application\/pdf","systemversion":"1.2","systemId":"eurix-mw-
1","puid":"fmt\/16","fileversion":"1.2"},{"processType":"ingest"," etc.

Description Returns information: about log data that keep track of every object passing the PoF middleware
containing information about the file format, version, mime type, log date, active system, PBC-Id,
the pronom unique identifier (puid), and the event (ingest/access) filtered on year, and version of
an active system.
Example of use: as statistical use of file format data to preservation planning that need to be
interconnected to type of system. This data could be used as input to preparation for a re-
activation scenario.

Table 12: CaPM-Preservation Planning Support-REST-API

Deliverable 5.4 ForgetIT

© ForgetIT Page 45 (of 55)

6 Summary
As indicated by the success/progress indicators discussion in sections 3 and 4, the transition of
objects between active systems and preservation systems are in good shape. With the introduction
of the Context-aware Preservation Manager, and especially the Preservation Broker Contract, the
transition of objects between systems, and the interaction between those systems, has reached a
state where it is possible (and necessary) to establish agreements between the Active System, the
PoF middleware, and the Digital Preservation System (DPS). These agreements are formulated in
the Preservation Broker Contract and include parts that are relevant mainly for documentation, but
the major parts handle information on what is possible to automate within the PoF framework, but
also to some extent in the DPS and in the communication between systems. This means that the
Active System user/owner has to spend some time initially on setting up this contract, but many of
the parts are intended for the PoF manager/operator and thereby not something that should
concern the customer.

6.1 Lessons Learned
The work in this workpackage has led us to start working on formalised, machine-readable,
contracts handling, among other things, evolution of the environmental setting of these objects,
including many-to-many relationships between systems. One lesson learned is that it would have
gone smoother and gained more impact if the idea had been in the project from the beginning, but
although that was not the case – we have still gained momentum in the development of the
contract. The considerations that have to go into the process dealing with individuals (personal
preservation) also gave us new insight into e.g. different needs for ownership, condensation or
even removal of preserved objects that differ from typical organisational settings which usually are
more formalised and role-based. The personal preservation setting could serve as an interesting
input even to the more well defined archival setting that many, but not all, organisations have. The
purpose, in the long run, is that the contract should be able to combine certain elements from both
"fields" that in turn lead to a preservation solution that is somewhat tailor-made for each customer.

The work with a middleware, message queue, and eventually an Enterprise Service Bus (ESB),
has been rewarding and although not necessarily novel, the service bus together with the
Preservation Broker Contract can be used to specify different solutions (paths) for different
customers. The idea is that the contract then holds information independently from the ESB, and
thereby lessens the dependency on a certain service bus, but there is room for more development
on this part, which leads us into the next section.

6.2 Vision for the Future
We already today see an increasing demand for managing many-to-many relationships in digital
preservation, for example in agencies in Sweden. There exists an initial interest from preservation
service providers, including at the level of government agencies, to continue working on the
Preservation Broker Contract, adapting it to a national context if needed. This could for example
include developing it further to support Business Process Modelling, e.g. through use of XML
Process Definition Language (XPDL)19.

19 http://www.xpdl.org/

ForgetIT Deliverable 5.4

Page 46 (of 55) www.forgetit-project.eu

References

[Afrasiabi Rad, Nilsson, Päivärinta, 2014] Afrasiabi Rad, P., Nilsson, J., Päivärinta, T. (2014).
Administration of Digital Preservation Services in the Cloud Over Time : Design Issues and
Challenges for Organizations. The Proceedings of the 2nd International Conference on
Cloud Security Management, The Proceedings of the 2nd International Conference on Cloud
Security Management / edited by Barbara Endicott-Popovsky.

[CCSDS, 2004] Consultative Committee for Space Data Systems (2004). Producer-Archive
Interface Methodology Abstract Standard. Issue 1. Recommendation for Space Data System
Practices (Magenta Book), CCSDS 651.0-M-1. Washington, D.C.: CCSDS Secretariat, May
2004. [Equivalent to ISO 20652:2006.]

[CCSDS, 2014] Consultative Committee for Space Data Systems (2014). Producer-Archive
Interface Specification (PAIS). Recommendation for Space Data System Standards (Blue
Book), CCSDS 651.1-B-1. Washington D.C.: CCSDS Secretariat, February 2014.

[CCSDS, 2012] Consultative Committee for Space Data Systems (2012). Reference Model for an
Open Archival Information System (OAIS). Issue 2. Recommendation for Space Data
System Practices (Magenta Book), CCSDS 650.0-M-2. Washington, D.C.: CCSDS
Secretariat, June 2012. [Equivalent to ISO 14721:2012.]

[Chen et al., 2016] Chen, D., Gallo, F., Gür, G., Greenwood, M.A., Andersson, I., Nilsson, J.
(2015). D7.4: Computational Storage Services – Third Release. ForgetIT.

[Gallo et al., 2014] Gallo, F., Pellegrino, J., Niederée, C., Kanhabua, N., Chen, D., Maus, H.,
Solachidis, V., Damhuis, A., Greenwood, M.A. (2014). D8.3: The Preserve-or-Forget
Framework – First release. ForgetIT

[Gallo et al., 2015a] Gallo, F., Niederée, C., Andersson, I., Nilsson, J., Chen, D., Maus, H.,
Greenwood, M., and Logie, R. (2015). D8.2: The Preserve-or-Forget Reference Model Initial
Model. ForgetIT

[Gallo et al., 2015b] Gallo, F., Ceroni, A., Tran, T., Chen, D., Andersson, I., Greenwood, M. A.,
Maus, H., ... Goslar, J. (2015). Deliverable D8.4: The Preserve-or-Forget Framework -
Second Release. ForgetIT

[Gallo et al., 2016] Gallo, F., Niederée, C., Andersson, I., Nilsson, J., Chen, D., Maus, H.,
Greenwood, M. A., Logie, R., and Allasia, W. (2016). Deliverable D8.5: The Preserve-or-
Forget Reference Model - Final Model. ForgetIT

[Greenwood et al., 2016] Greenwood, M. A., Petrak, J., Gorrell, G., Solachidis, V., Papadopoulou,
O., Apostolidis, … Maus, H. (2016). D6.4 Contextualisation Framework and Evaluation.
ForgetIT

[Kanhabua et al., 2015] Kanhabua, N., Niederée, C., Ceroni, A., Djafari-Naini, K., Kawase, R.,
Tran, T., Maus, H., Schwarz, S. (2015). D3.3: Strategies and Components for Managed
Forgetting – Second Release. ForgetIT

[Linthicum, 2000] Linthicum, D. S. (2000). Enterprise Application Integration. Upper Saddle River,
NJ: Addison-Wesley Professional.

[Mezaris et al., 2016] Mezaris, V., Solachidis, V., Chen, D., Eldesouky, B., Greenwood, M.A., Tan,
A.S., … Tastzoglou., D. (2016). D4.4 Information analysis, consolidation and concen-tration
techniques, and evaluation - Final release. ForgetIT

[Nilsson et al., 2014] Nilsson, J. Andersson, I, Afrasiabi Rad, P., Lindqvist, G., Gallo, F.,
Rabinovici-Cohen, S., Maus. H., Dobberkau, O., Allasia, W., Päivärinta, T. (2014). D5.2:
Workflow model and prototype for transition between active system and AIS - first release.
ForgetIT

[Nilsson et al., 2015] Nilsson, J., Andersson, I., Lindqvist, G., Westerlund, P. (2015). D5.3:
Workflow model and prototype for transition between active system and AIS – second
release. ForgetIT

Deliverable 5.4 ForgetIT

© ForgetIT Page 47 (of 55)

[Papazoglou, 2003] Papazoglou, M. P. (2003). Service-oriented computing: Concepts,
characteristics and directions. In Web Information Systems Engineering, 2003. WISE 2003.
Proceedings of the Fourth International Conference on (pp. 3-12). IEEE.

[Preservica, 2014] Preservica (2014), Tessella launches Preservica subsidiary business. Press
Release 2014-04-29, http://preservica.com/press-releases/tessella-launches-preservica-
subsidiary-business/ Accessed 2015-12-12.

[Päivärinta et al., 2014] Päivärinta, T., Nilsson, J., Afrasiabi Rad, P., Maus, H., Dobberkau, O.
(2014). D5.1: Concise preservation by combining managed forgetting and contextualization
remembering: Foundations of synergetic preservation. ForgetIT.

[Wilkes et al. 2009] Wilkes, W., Brunsmann, J., Heutelbeck, D., Hundsdörfer, A., Hemmje, M., &
Heidbrink, H. U. (2009). Towards support for long-term digital preservation in product life
cycle management. California Digital Library.

 [York, 2010] York, J. (2010). Building a future by preserving our past: the preservation
infrastructure of HathiTrust digital library. In 76th IFLA general congress and assembly (pp.
10-15).

ForgetIT Deliverable 5.4

Page 48 (of 55) www.forgetit-project.eu

Appendix A – Preservation Broker Contract XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<!--
**-->
<!-- First draft of PBC Schema, 2016-01-11, Göran Lindqvist, Ingemar Andersson, Jörgen
Nilsson Luleå University of Technology -->
<!-- pbc version 0.3 -->
<!--
**-->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="pbc" type="pbc"/>
 <xs:complexType name="pbc">
 <xs:sequence>
 <xs:element name="identification" type="identification"/>
 <xs:element name="collectionType" type="collectionType" minOccurs="0"/>
 <xs:element name="services" type="services" minOccurs="0"/>
 <xs:element name="actions" type="actions" minOccurs="0"/>
 <xs:element name="rules" type="rules"/>
 </xs:sequence>
 </xs:complexType>
 <!--*****Identification main nodes*****-->
 <xs:complexType name="identification">
 <xs:sequence>
 <xs:element name="pbcTemplateId" type="xs:string"/>
 <xs:element name="preservationLevel" type="preservationLevelValue"/>
 <xs:element name="pbcId" type="xs:string"/>
 <xs:element name="pbcCreationDate" type="xs:dateTime" default="2015-08-
01T00:00:00Z"/>
 <xs:element name="pbcValidFrom" type="xs:dateTime" default="2015-11-
01T00:00:00Z"/>
 <xs:element name="pbcExpirationDate" type="xs:dateTime" default="2020-12-
31T00:00:00Z"/>
 <xs:element name="pbcDescription" type="xs:string"/>
 <xs:element name="contact" type="contact"/>
 <xs:element name="activeSystem" type="activeSystem"/>
 <xs:element name="preservationSystem" type="preservationSystem"/>
 <xs:element name="preservationValue" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <!--Values: identification:preservationLevel-->
 <xs:simpleType name="preservationLevelValue">
 <xs:restriction base="xs:string">
 <xs:enumeration value="premium"/>
 <xs:enumeration value="standard"/>
 <xs:enumeration value="basic"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- contact => Identification-->
 <xs:complexType name="contact">
 <xs:sequence>
 <xs:element name="ownerName" type="xs:string"/>
 <xs:element name="ownerEmail" type="xs:string"/>
 <xs:element name="alternativeContactName" type="xs:string"/>
 <xs:element name="alternativeContactEmail" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <!-- activeSystem => Identification-->
 <xs:complexType name="activeSystem">
 <xs:sequence>

Deliverable 5.4 ForgetIT

© ForgetIT Page 49 (of 55)

 <xs:element name="Id" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="type" type="xs:string"/>
 <xs:element name="version" type="xs:string"/>
 <xs:element name="serviceId" type="xs:string"/>
 <xs:element name="ownedBy" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <!--preservationSystem => Identification-->
 <xs:complexType name="preservationSystem">
 <xs:sequence>
 <xs:element name="Id" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="version" type="xs:string"/>
 <xs:element name="location" type="xs:string"/>
 <xs:element name="serviceId" type="xs:string"/>
 <xs:element name="ownedBy" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <!--*****collectionType main nodes*****-->
 <xs:complexType name="collectionType">
 <xs:sequence>
 <!--<xs:element name="groupType" type="groupType" minOccurs="0"/> -->
 <xs:element name="label" type="xs:string" minOccurs="0"/>
 <xs:element name="descripton" type="xs:string" minOccurs="0"/>
 <xs:element name="quantity" type="quantity" minOccurs="0"/>
 <xs:element name="size" type="size" minOccurs="0"/>
 <xs:element name="mimeTypes" type="mimeTypes" minOccurs="0"/>
 <xs:element name="tranformations" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="transformation" type="transformation"
minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="keepSourceFileName" type="keepSourceFileNameValue"
default="yes"
 minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--groupType => Collection-->
 <xs:complexType name="groupType">
 <xs:sequence>
 <xs:element name="Id" type="xs:string" minOccurs="0"/>
 <xs:element name="description" type="xs:string" minOccurs="0"/>
 <xs:element name="structureName" type="xs:string" minOccurs="0"/>
 <xs:element name="occurrence" type="occurrence" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--groupTypeOccurrence => groupType -> Collection-->
 <xs:complexType name="occurrence">
 <xs:sequence>
 <xs:element name="min" type="xs:string" minOccurs="0"/>
 <xs:element name="max" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--quantity => Collection-->
 <xs:complexType name="quantity">
 <xs:sequence>
 <xs:element name="min" type="xs:string" minOccurs="0"/>
 <xs:element name="max" type="xs:string" minOccurs="0"/>

ForgetIT Deliverable 5.4

Page 50 (of 55) www.forgetit-project.eu

 </xs:sequence>
 </xs:complexType>
 <!--size => Collection-->
 <xs:complexType name="size">
 <xs:sequence>
 <xs:element name="min" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="max" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="unitType" type="xs:string" default="MB" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--Values: Collection:size-->
 <xs:simpleType name="unitTypeValue">
 <xs:restriction base="xs:string">
 <xs:enumeration value="MB"/>
 <xs:enumeration value="GB"/>
 </xs:restriction>
 </xs:simpleType>
 <!--mimeTypes => Collection-->
 <xs:complexType name="mimeTypes">
 <xs:sequence>
 <xs:element name="mimeType" maxOccurs="unbounded" type="xs:string">
</xs:element>
 </xs:sequence>
 </xs:complexType>
 <!--formatTransformations => CollectionType-->
 <xs:complexType name="formatTransformations"/>
 <!--tranformation => formatTransformations => CollectionType-->
 <xs:complexType name="transformation">
 <xs:sequence>
 <xs:element name="onAction" type="onActionValue" minOccurs="0"/>
 <xs:element name="keepOriginal" type="keepOriginalValue" default="yes"
minOccurs="0"/>
 <xs:element name="origMimeType" type="xs:string" minOccurs="0"/>
 <xs:element name="origPuid" type="xs:string" minOccurs="0"/>
 <xs:element name="targetMimeType" type="xs:string" minOccurs="0"/>
 <xs:element name="targetPuid" type="xs:string" minOccurs="0"/>
 <xs:element name="serviceId" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--Values: Collection:CollectionType:formatTransformations:tranformation:onAccess-->
 <xs:simpleType name="onActionValue">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ingest"/>
 <xs:enumeration value="access"/>
 </xs:restriction>
 </xs:simpleType>
 <!--*****services main nodes*****-->
 <xs:complexType name="services">
 <xs:sequence>
 <xs:element name="service" type="service" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <!--service => services-->
 <xs:complexType name="service">
 <xs:sequence>
 <xs:element name="id" type="xs:string" minOccurs="0"/>
 <xs:element name="name" type="xs:string" minOccurs="0"/>
 <xs:element name="description" type="xs:string" minOccurs="0"/>
 <xs:element name="endpoint" type="xs:string" minOccurs="0"/>
 <xs:element name="user" type="xs:string" minOccurs="0"/>
 <xs:element name="password" type="xs:string" minOccurs="0"/>
 <xs:element name="endpointType" type="xs:string" minOccurs="0"/>

Deliverable 5.4 ForgetIT

© ForgetIT Page 51 (of 55)

 <xs:element name="responseDataFormat" type="xs:string" minOccurs="0"/>
 <xs:element name="version" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--*****actions main nodes*****-->
 <xs:complexType name="actions">
 <xs:sequence>
 <xs:element name="onPreIngest" type="onPreIngest" minOccurs="0"/>
 <xs:element name="onAccess" type="onAccess" minOccurs="0"/>
 <xs:element name="onStorage" type="onStorage" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--onPreIngest => actions-->
 <xs:complexType name="onPreIngest">
 <xs:sequence>
 <xs:element name="appraisalThresholds" type="appraisalThresholds"
minOccurs="0"/>
 <xs:element name="downloadStructure" type="downloadStructureValue"
default="none"
 minOccurs="0"/>
 <xs:element name="packageEncodingType" type="packagEncodingValue"
default="zip"
 minOccurs="0"/>
 <xs:element name="fixity" type="fixity" minOccurs="0"/>
 <xs:element name="externalMetadata" type="externalMetadata" minOccurs="0"/>
 <xs:element name="sip" type="sip"/>
 </xs:sequence>
 </xs:complexType>
 <!--Values: onPreIngest:packageEncodingType-->
 <xs:simpleType name="packagEncodingValue">
 <xs:restriction base="xs:string">
 <xs:enumeration value="tar"/>
 <xs:enumeration value="zip"/>
 </xs:restriction>
 </xs:simpleType>
 <!--Values: "onPreIngest:downloadStructure"-->
 <xs:simpleType name="downloadStructureValue">
 <xs:restriction base="xs:string">
 <xs:enumeration value="physical"/>
 <xs:enumeration value="logical"/>
 <xs:enumeration value="none"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- appraisalThresholds => onPreIngest-->
 <xs:complexType name="appraisalThresholds">
 <xs:sequence>
 <xs:element name="preservationValue" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!-- fixity => onPreIngest-->
 <xs:complexType name="fixity">
 <xs:sequence>
 <xs:element name="onRetrieval" type="onRetrieval" minOccurs="0"/>
 <xs:element name="atRest" type="atRest" minOccurs="0"/>
 <xs:element name="inPackage" type="inPackage"/>
 <xs:element name="onTransfer" type="onTransfer" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--OnRetrieval => fixity -> onPreIngest-->
 <xs:complexType name="onRetrieval">
 <xs:sequence>
 <xs:element name="algorithm" type="algorithmValues" default="md5"
minOccurs="0"/>

ForgetIT Deliverable 5.4

Page 52 (of 55) www.forgetit-project.eu

 <xs:element name="serviceId" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--AtRest => fixity -> onPreIngest-->
 <xs:complexType name="atRest">
 <xs:sequence>
 <xs:element name="algorithm" type="algorithmValues" default="md5"
minOccurs="0"/>
 <xs:element name="serviceId" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--InPackage => fixity -> onPreIngest-->
 <xs:complexType name="inPackage">
 <xs:sequence>
 <xs:element name="algorithm" type="algorithmValues" default="md5"
minOccurs="0"/>
 <xs:element name="serviceId" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--OnTransfer => fixity -> onPreIngest-->
 <xs:complexType name="onTransfer">
 <xs:sequence>
 <xs:element name="algorithm" type="algorithmValues" default="md5"
minOccurs="0"/>
 <xs:element name="serviceId" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--Values: fixity:algorithm-->
 <xs:simpleType name="algorithmValues">
 <xs:restriction base="xs:string">
 <xs:enumeration value="md5"/>
 <xs:enumeration value="sha1"/>
 <xs:enumeration value="sha256"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- externalMetadata => onPreIngest-->
 <xs:complexType name="externalMetadata">
 <xs:sequence>
 <xs:element name="sources" type="sources" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!-- sources => externalMetadata -> onPreIngest-->
 <xs:complexType name="sources">
 <xs:group ref="sourceFilters" minOccurs="0" maxOccurs="unbounded"/>
 </xs:complexType>
 <!--group source and filters-->
 <xs:group name="sourceFilters">
 <xs:sequence>
 <xs:element name="serviceId" type="xs:string" minOccurs="0"/>
 <xs:element name="parameters" type="parameters" minOccurs="0"/>
 </xs:sequence>
 </xs:group>
 <!--parameters =>sourceFilter(group) -> sources -> externalMetadata -> onPreIngest-->
 <xs:complexType name="parameters">
 <xs:sequence>
 <xs:element name="parameter" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--onIngest => actions-->
 <xs:complexType name="onIngest">
 <xs:sequence>
 <xs:element name="formatTransformation" type="formatTransformations"
minOccurs="0"/>

Deliverable 5.4 ForgetIT

© ForgetIT Page 53 (of 55)

 </xs:sequence>
 </xs:complexType>
 <!--Values: onIngest:keepSourceFileName-->
 <xs:simpleType name="keepSourceFileNameValue">
 <xs:restriction base="xs:string">
 <xs:enumeration value="yes"/>
 <xs:enumeration value="no"/>
 </xs:restriction>
 </xs:simpleType>
 <!--Values: transformation:keepOrigin-->
 <xs:simpleType name="keepOriginalValue">
 <xs:restriction base="xs:string">
 <xs:enumeration value="yes"/>
 <xs:enumeration value="no"/>
 </xs:restriction>
 </xs:simpleType>
 <!--onAccess => actions-->
 <xs:complexType name="onAccess">
 <xs:sequence>
 <xs:element name="accessControl" type="accessControlValues" default="none"
minOccurs="0"/>
 <xs:element name="adaptStructure" type="adaptStructureValues" default="none"
 minOccurs="0"/>
 <xs:element name="externalMetadata" type="externalMetadata" minOccurs="0"/>
 <xs:element name="fixity" type="fixityOnAccess" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--Values: onAccess:accessControl-->
 <xs:simpleType name="accessControlValues">
 <xs:restriction base="xs:string">
 <xs:enumeration value="none"/>
 <xs:enumeration value="medium"/>
 <xs:enumeration value="high"/>
 </xs:restriction>
 </xs:simpleType>
 <!--Values: onAccess:adaptStructure-->
 <xs:simpleType name="adaptStructureValues">
 <xs:restriction base="xs:string">
 <xs:enumeration value="none"/>
 <xs:enumeration value="logical"/>
 <xs:enumeration value="physical"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="fixityOnAccess">
 <xs:sequence>
 <xs:element name="algorithm" type="algorithmValues" minOccurs="0"/>
 <xs:element name="serviceId" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--onStorage => actions-->
 <xs:complexType name="onStorage">
 <xs:sequence>
 <xs:element name="level" type="levelValues" default="silver" minOccurs="0"/>
 <xs:element name="location" type="locationValues" default="none"
minOccurs="0"/>
 <xs:element name="size" type="storageSize" minOccurs="0"/>
 <xs:element name="versioning" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="retentionPeriod" type="retentionPeriod" minOccurs="0"/>
 <xs:element name="fixity" type="checksum" minOccurs="0"/>
 <xs:element name="multiFactorDelete" type="keepOriginalValue" minOccurs="0"/>
 <xs:element name="encryption" type="encryption" minOccurs="0"/>
 <xs:element name="eventLogs" type="eventLogs" minOccurs="0"/>

ForgetIT Deliverable 5.4

Page 54 (of 55) www.forgetit-project.eu

 <xs:element name="eventNotification" type="eventNotification" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <!--Values: onStorage:level-->
 <xs:simpleType name="levelValues">
 <xs:restriction base="xs:string">
 <xs:enumeration value="platinum"/>
 <xs:enumeration value="gold"/>
 <xs:enumeration value="silver"/>
 <xs:enumeration value="bronze"/>
 </xs:restriction>
 </xs:simpleType>
 <!--Values: onStorage:location-->
 <xs:simpleType name="locationValues">
 <xs:restriction base="xs:string">
 <xs:enumeration value="local"/>
 <xs:enumeration value="EU"/>
 <xs:enumeration value="US"/>
 <xs:enumeration value="none"/>
 </xs:restriction>
 </xs:simpleType>
 <!--storageSize => onStorage -> actions-->
 <xs:complexType name="storageSize">
 <xs:sequence>
 <xs:element name="max" type="xs:integer" minOccurs="0"/>
 <xs:element name="unitType" type="unitTypeValue" default="GB" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--retentionPeriod => onStorage -> actions-->
 <xs:complexType name="retentionPeriod">
 <xs:sequence>
 <xs:element name="min" type="xs:integer" minOccurs="0"/>
 <xs:element name="nextLevel" type="levelValues" minOccurs="0"/>
 <xs:element name="nextLocation" type="locationValues" minOccurs="0"/>
 <xs:element name="max" type="xs:integer" minOccurs="0"/>
 <xs:element name="unitType" type="unitTypeValue" minOccurs="0"/>
 <xs:element name="endOfRetentionAction" type="xs:integer" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--fixity => onStorage -> actions-->
 <xs:complexType name="checksum">
 <xs:sequence>
 <xs:element name="algorithm" type="algorithmValues" minOccurs="0"/>
 <xs:element name="Interval" type="xs:integer" minOccurs="0"/>
 <xs:element name="intervalUnit" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--encryption => onStorage -> actions-->
 <xs:complexType name="encryption">
 <xs:sequence>
 <xs:element name="keyAtRest" type="xs:string" minOccurs="0"/>
 <xs:element name="keyAtTransfer" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--eventLogs => onStorage -> actions-->
 <xs:complexType name="eventLogs">
 <xs:sequence>
 <xs:element name="event" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <!--eventNotifications => onStorage -> actions-->

Deliverable 5.4 ForgetIT

© ForgetIT Page 55 (of 55)

 <xs:complexType name="eventNotification">
 <xs:sequence>
 <xs:element name="eventType" type="xs:string" minOccurs="0"/>
 <xs:element name="serviceId" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--*****ruleSets main nodes*****-->
 <!--ruleSet -> ruleSets-->
 <!--rule -> ruleSet-->
 <xs:complexType name="rule">
 <!-- <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="description" type="xs:string"/> -->
 <xs:sequence>
 <xs:element name="Id" type="xs:string"/>
 <xs:element name="type" type="xs:string"/>
 <xs:element name="description" type="xs:string"/>
 <xs:element name="ruleparameters" type="ruleparameters"/>
 <xs:element name="action" type="xs:string"/>
 <xs:element name="otherwiseAction" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ruleparameters">
 <xs:sequence>
 <xs:element name="ruleparameter" type="ruleparameter" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ruleparameter">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="dependency" type="xs:string"/>
 <xs:element form="qualified" name="condition" type="xs:string"/>
 <xs:element name="value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="file" type="xs:string"/>
 <xs:element name="folder" type="xs:string"/>
 <xs:complexType name="packageStructure">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="file"/>
 <xs:element maxOccurs="unbounded" ref="folder"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="metadataSchema" type="xs:string"/>
 <xs:complexType name="sip">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="metadataSchema"/>
 <xs:element name="packageStructure" type="packageStructure"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="rules">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" name="rule" type="rule" form="qualified"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

